DOI QR코드

DOI QR Code

수소 생산을 위한 가시광선 감응 질소 도핑 $TiO_2$$Nb_2O_5$ 광촉매의 개발

Development of Visible Light Responsive Nitrogen Doped Photocatalysts ($TiO_2$, $Nb_2O_5$) for hydrogen Evolution

  • 최미진 (광주과학기술원 환경공학부) ;
  • 채규정 (코오롱건설(주) 기술연구소) ;
  • 유혜원 (광주과학기술원 환경공학부) ;
  • 김경열 (광주과학기술원 환경공학부) ;
  • 장암 (성균관대학교 사회환경시스템공학과) ;
  • 김인수 (광주과학기술원 환경공학부)
  • Choi, Mi-Jin (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Chae, Kyu-Jung (R&D Institute, Kolon Engineering and Construction) ;
  • Yu, Hye-Weon (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Kyoung-Yeol (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jang, Am (Civil & Environmental Engineering, Sungkyunkwan University) ;
  • Kim, In-S. (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
  • 투고 : 2010.11.10
  • 심사 : 2011.12.30
  • 발행 : 2011.12.30

초록

물의 광분해에 의한 수소생산을 위하여 이산화티타늄($TiO_2$)과 산화니오븀($Nb_2O_5$)을 이용하여 가시광선 감응 광촉매 개발을 본 연구의 목적으로 하고 있다. 이를 위하여 요소를 이용한 질소 도핑한 $TiO_2$, $Nb_2O_5$, $HNb_3O_8$ ($TiO_2-N$, $Nb_2O_5-N$$HNb_3O_8-N$)을 제조하였다. 그 결과 질소 도핑이 광촉매의 띠간격 에너지를 감소시킴으로써 excitation파장이 자외선 영역에서 가시광선 영역으로 이동한 것을 reflectance 관찰을 통해 알 수 있었다. 특히 $TiO_2-N$의 경우 띠 간격 에너지가 3.3 eV ($TiO_2$)에서 2.72 eV로 가장 큰 감소를 보였다. 또한, 가시광선 영역에서 로다민 B 광분해 반응을 통하여 광촉매의 활성도를 평가하였을 때, 질소 도핑한 경우($Nb_2O_5-N$$HNb_3O_8-N$)는 모두 80% 이상의 분해 효율을 나타내었으며 특히 $TiO_2-N$이 약 99.8%의 높은 분해율을 보여주었다. 그러나 질소 도핑을 하지 않은 $TiO_2$$Nb_2O_5$의 경우, 약 10% 의 로다민 B가 분해된 것으로 관찰되었다. 또한 가시광선 영역에서 각 촉매의 광전류 생성을 비교해보았을 때, $HNb_3O_8-N$ ($63.7mA/cm^2$)이 가장 높은 전류 반응을 나타내었으며 물의 광분해에 의한 수소생산량을 비교해보면 $Nb_2O_5-N$$19.4{\mu}mol/h$의 가장 많은 양을 생산한 것으로 나타났다.

Development of visible light responsive photocatalysts is a promising research area to facilitate utilization of solar energy for hydrogen production via photocatalytic water splitting. In this study two groups of samples, nitrogen (N)-doped niobium pentoxide ($Nb_2O_5$) and titanium dioxide ($TiO_2$) ($Nb_2O_5-N$, $HNb_3O_8-N$, $TiO_2-N$) and N-undoped ones ($Nb_2O_5$ and $TiO_2$) were tested. In order to utilize visible light, nitrogen atoms were doped in selected photocatalysts by using urea. A shift of the absorption edges of the Ndoped samples in the visible light region was observed. Under visible light irradiation, N-doped samples were more prominent photocatalytic activities than the N-undoped samples. Specifically, 99.7% of rhodamine B (RhB) was degraded after 60 minutes of visible light irradiation with $TiO_2-N$. Since $TiO_2-N$ shows the highest activity of RhB degradation, it was supposed to generate the highest current response. However, $HNb_3O_8-N$ showed the highest current response ($63.7mA/cm^2$) than $TiO_2-N$. More interestingly, when we compare the hydrogen production, $Nb_2O_5-N$ produced $19.4{\mu}mol/h$ of hydrogen.

키워드

참고문헌

  1. Joan, M. O., "Hydrogen: The Fuel of the Future?" Physics Today, 55(4), 69-75(2002). https://doi.org/10.1063/1.1480785
  2. Chae, K. J., Choi, M. J., Lee, J., Ajayi, F. F. and Kim, I. S., "Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis," Int. J. Hydrogen Energy, 33(19), 5184-5192(2008). https://doi.org/10.1016/j.ijhydene.2008.05.013
  3. Seger, B. and Kamat, P. V., "Fuel Cell Geared in Reverse: Photocatalytic Hydrogen Production Using a $TiO_{2}$/Nafion/Pt Membrane Assembly with No Applied Bias," J. Phys. Chem. C, 113(43), 18946-18952(2009). https://doi.org/10.1021/jp907367k
  4. Bae, S., Kang, J., Shim, E., Yoon, J. and Joo, H., "Correlation of electrical and physical properties of photoanode with hydrogen evolution in enzymatic photo-electrochemical cell," J. Power Sources, 179(2), 863-869(2008). https://doi.org/10.1016/j.jpowsour.2007.12.117
  5. Chae, K. J., Choi, M. J., Kim, K. Y., Ajayi, F. F., Chang, I. S. and Kim, I. S., "A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen," Environ. Sci. Technol., 43(24), 9525-9530(2009). https://doi.org/10.1021/es9022317
  6. Dholam, R., Patel, N., Adami, M. and Miotello, A., "Hydrogen production by photocatalytic water-splitting using Cror Fe-doped $TiO_{2}$ composite thin films photocatalyst," Int. J. Hydrogen Energy, 34(13), 5337-5346(2009). https://doi.org/10.1016/j.ijhydene.2009.05.011
  7. Ni, M., Leung, M. K. H., Leung, D. Y. C. and Sumathy, K., "A review and recent developments in photocatalytic watersplitting using $TiO_{2}$ for hydrogen production," Renew. Sustain. Energ. Rev., 11(3), 401-425(2007). https://doi.org/10.1016/j.rser.2005.01.009
  8. Park, H. and Choi, W., "Visible-light-sensitized production of hydrogen using perfluorosulfonate polymer-coated $TiO_{2}$ nanoparticles: An alternative approach to sensitizer anchoring," Langmuir, 22(6), 2906-2911(2006). https://doi.org/10.1021/la0526176
  9. Barkhordarian, G., Klassen, T. and Bormann, R. i., "Fast hydrogen sorption kinetics of nanocrystalline Mg using $Nb_{2}O_{5}$ as catalyst," Scripta Mater., 49(3), 213-217(2003). https://doi.org/10.1016/S1359-6462(03)00259-8
  10. Cui, H., Dwight, K., Soled, S. and Wold, A., "Surface Acidity and Photocatalytic Activity of $Nb_{2}O_{5}/TiO_{2}$ Photocatalysts" J. Solid State Chem., 115(1), 187-191(1995). https://doi.org/10.1006/jssc.1995.1118
  11. Xing, J., Shan, Z., Li, K., Bian, J., Lin, X., Wang, W. and Huang, F., "Photocatalytic activity of $Nb_{2}O_{5}$/SrNb2O6 heterojunction on the degradation of methyl orange," J. Phys. Chem. Solids, 69(1), 23-28(2008). https://doi.org/10.1016/j.jpcs.2007.07.087
  12. Romero, R., Ramos-Barrado, J. R., Martin, F. and Leinen, D., "$Nb_{2}O_{5}$ thin films obtained by chemical spray pyrolysis," Surf. Interface Anal., 36(8), 888-891(2004). https://doi.org/10.1002/sia.1793
  13. Akira, F., Kazuhito, H. and Toshiya, W., "$TiO_{2}$ Photocatalysis: Fundamentals and Applications," Tokyo: BKC Inc,(1999).
  14. Wang, H., Xu, P. and Wang, T., "Doping of $Nb_{2}O_{5}$ in photocatalytic nanocrystalline/nanoporous WO3 films," Thin Solid Films, 388(1-2), 68-72(2001). https://doi.org/10.1016/S0040-6090(01)00853-7
  15. Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T. and Matsumura, M., "Preparation of S-doped $TiO_{2}$ photocatalysts and their photocatalytic activities under visible light," Appl. Catal. Gen., 265(1), 115-121(2004). https://doi.org/10.1016/j.apcata.2004.01.007
  16. Li, X., Kikugawa, N. and Ye, J., "Nitrogen-doped lamellar niobic acid with visible light-responsive photocatalytic activity," Adv. Mater., 20(20), 3816-3819(2008). https://doi.org/10.1002/adma.200702975
  17. Ohashi, N., "Visible-light-driven photocatalysis on fluorinedoped $TiO_{2}$ powders by the creation of surface oxygen vacancies," Chem. Phys. Lett., 401(4-6), 579(2005). https://doi.org/10.1016/j.cplett.2004.11.126
  18. Yang, K., Dai, Y., Huang, B. and Whangbo, M. H., "Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped $TiO_{2}$," Chem. Mater., 20(20), 6528-6534(2008). https://doi.org/10.1021/cm801741m
  19. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y., "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science, 293(5528), 269-271(2001). https://doi.org/10.1126/science.1061051
  20. 이종호, 허강헌, 이정수, "슬러리 분무열분해에 의한 초미립 티탄산 바륨 분말 제조," 한국세라믹학회지, 46(2), 137-145 (2009).
  21. Guo, X., Hou, W., Ding, W., Fan, Y., Yan, Q. and Chen, Y., "Synthesis of a novel super-microporous layered material and its catalytic application in the vapor-phase Beckmann rearrangement of cyclohexanone oxime," Microporous Mater., 80 (1-3), 269-274(2005). https://doi.org/10.1016/j.micromeso.2005.01.001
  22. Hao, H. and Zhang, J., "The study of Iron (III) and nitrogen co-doped mesoporous $TiO_{2}$ photocatalysts: synthesis, characterization and activity," Microporous Mater., 121(1-3), 52-57(2009). https://doi.org/10.1016/j.micromeso.2009.01.002
  23. Qu, P., Zhao, J., Shen, T. and Hidaka, H., "$TiO_{2}$-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous $TiO_{2}$ colloidal solution," J. Mol. Catal. A: Chem., 129(2-3), 257-268 (1998). https://doi.org/10.1016/S1381-1169(97)00185-4