The Bacterial Community Structure in Biofilms of the RABC Process for Swine Butchery Wastewater Treatment

돼지 도축폐수 처리를 위한 RABC 공정의 생물막 세균군집 구조

  • Sung, Gi-Moon (Department of Microbiology, Graduate School, Daejeon University) ;
  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, Silla University) ;
  • Park, Seong-Joo (Department of Microbiology, Graduate School, Daejeon University)
  • 성기문 (대전대학교 대학원 미생물학과) ;
  • 이동근 (신라대학교 제약공학과) ;
  • 박성주 (대전대학교 대학원 미생물학과)
  • Received : 2011.02.11
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

Culture-independent microscopic observations and 16S rDNA analyses were applied to describe the bacterial community inherent to the biofilm structure of the RABC (Rotating Activated Bacillus Contactors) process for swine butchery wastewater treatment. The ratios of Gram-positive bacterial counts to total bacterial counts of the RABC process were significantly increased in the last aeration tank as well as returned sludge, while those of the existing A2O (Anaerobic-Anoxic-Oxic) process maintained constant from aeration tanks to returned sludge. Totally nine phyla were recovered by 16S rDNA analysis, two of which were major groups: the Proteobacteria (64.1%) and the Actinobacteria (18.4%). The third major group was the endospore-forming Firmicutes (5.4%). The remaining six minor groups are the Bacteroidetes (3.3%), the Chlorobi (2.2%), the Nitrospirae (1.1%), the Chlorofleix (1.1%), the Acidobacteria (1.1%), and the Fusobacteria (1.1%). The ratio of endospore-forming bacteria was 19.4%, which was composed of the members of the Firmicutes phylum (5.4%) and the Intrasporangiaceae family (14.0%) of the Actinobacteria phylum. Nitrifying and denitrifying related- and phosphorus accumulating related-sequences were composed of 6.5% and 5.4% of total community, respectively, these could mean the high capacity of the RABC process to remove odor compounds and reduce eutrophication by efficient removing inorganic nutrients.

돼지 도축폐수를 처리하는 Rotating Activated Bacillus Contactors (RABC) 공정의 세균군집 특성을 파악하기 위하여 그람양성세균수와 총세균수를 계수하여 기존 고도폐수처리공정인 A2O (Anaerobic-Anoxic-Oxic) 공정과 비교하였다. RABC 공정의 생물막 세균군집구조는 비배양기법인 16S rDNA 염기서열결정법을 이용하여 분석하였다. RABC 공정의 총세균수에 대한 그람양성세균수 비율은 생물막(32%)에 비해 최종포기조(1282%) 및 반송슬러지(958%)에서 현저히 증가한 반면, A2O 공정의 그람양성세균수 비율은 호기조(40%)와 반송슬러지(49%) 모두에서 상대적으로 훨씬 낮았다. 총 9개 문에 해당하는 92개의 클론이 검출되었으며, 이 가운데 최우점 집단은 Proteobacteria (64.1%)와 Actinobacteria (18.4)%로서 이들 2개 문이 전체의 82.5%를 차지하였다. 3번째로 많이 검출된 것은 내생포자형성세균집단이 속하는 Firmicutes (5.4%) 문이었다. 소량 검출된 나머지 6개 문은 Bacteroidetes (3.3%), Chlorobi (2.2%), Nitrospirae (1.1%), Chlorofleix (1.1%), Acidobacteria (1.1%), Fusobacteria (1.1%)의 순이었다. Proteobacteria 문 중에서는 Betaproteobacteria 강 34.8%, Alphaproteobacteria 강 26.1%로서 대부분을 차지하였고, Gammaproteobacteria 강은 3.2%이었다. 내생포자형성세균집단의 비율은 모두 19.4%로서, Firmicutes 문 5.4%와 Actinobacteria 문의 Intrasporangiaceae과 14.0%이었다. 질화세균 및 탈질세균과 관련된 클론 비율 6.5%, 인축적세균과 관련된 클론 비율 5.4%를 기록함으로써 무기영양소 및 악취 제거능력을 가진 세균집단이 RABC 생물막에 많이 서식하고 있음이 확인되었다.

Keywords

References

  1. Ahn, T.S., S.G. Ahn, O.S. Kwon, S.J. Park, Y.G. Shin, T.Y. Ahn, and K.H. Lee. 2007. Environmental Microbiology, Shin- Kwang Press, Seoul.
  2. Ahn, T.S., S.H. Hong, O.S. Kim, J.J. Yoo, S.O. Jeon, and S.I. Choi. 2001. The changes of Bacillus spp. in municipal wastewater treatment plant with B3 process. Kor. J. Microbiol. 37, 209-213.
  3. Blackall, L.L., E.M. Seviour, D. Bradford, S. Rossetti, V. Tandoi, and R.J. Seviour. 2000. 'Candidatus Nostocoida limicola', a filamentous bacterium from activated sludge. Int. J. Syst. Evol. Microbiol. 50, 703-709. https://doi.org/10.1099/00207713-50-2-703
  4. Bosshard, P.P., S. Abels, R. Zbinden, E.C. Bottger, and M. Altwegg. 2003. Ribosomal DNA sequencing for identification of aerobic Gram-positive rods in the clinical laboratory (an 18-Month Evaluation). J. Clin. Microbiol. 41, 4134-4140. https://doi.org/10.1128/JCM.41.9.4134-4140.2003
  5. Choi, G.C., J.J. Park, D.K. Kang, J.C. Yu, I.G. Byun, H.S. Shin, T.H. Lee, and T.J. Park. 2008. Study on the performances and microbial community in the biofilm process for treating nonpoint source pollutants. J. KSEE 30, 1021-1027.
  6. Egli, K., F. Bosshard, C. Werlen, P. Lais, H. Siegrist, A.J.B. Zehnder, and J.R. van der Meer. 2003. Microbial composition and structure of a rotating biological contactor biofilm treating ammonium-rich wastewater without organic carbon. Microbiol. Ecol. 45, 419-432. https://doi.org/10.1007/s00248-002-2037-5
  7. Forster, S., J.R. Snape, H.M. Lappin-Scott, and J. Porter. 2002. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria. Appl. Environ. Microbiol. 68, 4772-4779. https://doi.org/10.1128/AEM.68.10.4772-4779.2002
  8. Gerhardt, P., R.G.E. Murray, W.A. Wood, and N.R. Krieg. 1994. Methods for general and molecular bacteriology, pp. 31-32. American Society for Microbiology. Washington, D.C., USA.
  9. Jeong, S., J.H. Nam, W. Bae, and D.H. Lee. 2010. Bacterial community structure of food wastewater treatment system combined with rotating biological contactor and tapered aeration reactor. Kor. J. Microbiol. 46, 169-176.
  10. Kim, M.K., J.H. Hong, Y.K. Kim, T.S. Ahn, and E.B. Shin. 2006. Evaluation of field application for the developed retrofitting process and analysis of bacterial community structure in pilot plant. J. KSEE 28, 240-248.
  11. Kim, E.H., Y.J. Jo, S.J. Park, G.S. Sin, S.B. Im, and J.G. Jeong. 2004. Advanced wastewater treatment process using rotating activated Bacillus contactor (RABC). J. Korean Soc. Wat. Qual. 20, 190-195.
  12. Kim, D.S. and Y.S. Park. 2008. Nutrient removal characterization by the addition ratio of BNR sludge in SBR. J. Envi. Hlth. Sci. 34, 76-85.
  13. Lee, H.K., J.H. Kim, C.K. Kim, and D.H. Lee. 2004. Molecular characterization of the bacterial community in activated sludges by PCR-RFLP. Kor. J. Microbiol. 40, 307-312.
  14. Lee, D.G., J.H. Lee, and S.J. Kim. 2005. Diversity and dynamics of bacterial species in a biofilm at the end of the Seoul water distribution system. World J. Microbiol. Biotechnol. 21, 155-162. https://doi.org/10.1007/s11274-004-2890-0
  15. Lim, B.R. and K.H. Ahn. 2002. Microbial community structure and treatment characteristics of domestic wastewater in the intermittently aerated membrane bioreactor. J. Korean Soc. Water Waste 16, 679-685.
  16. Ministry of Enviornment Republic of Korea. 2009. 2008 White paper on Environment. Seoul, 362-364.
  17. Ministry of Environment Republic of Korea. 2008. Mechanistic Modeling for Bacillus System, 2008.
  18. Park, T.J., C.M. Lee, K.S. Song, I.H. Cho, Y.K. Kim, and M.H. Chung. 2000. A study on the removal of nitrogen and phosphorus depending on existence of cilia media in sewage in anaerobicanoxic- oxic process. J. Envi. Hlth. Sci. 26, 69-75.
  19. Park, S.J., J.C. Yoon, K.S. Shin, E.H. Kim, S. Yim, Y.J. Cho, G.M. Sung, D.G. Lee, S.B. Kim, D.U. Lee, and et al. 2007. Dominance of endospore-forming bacteria on a rotating activated bacillus contactor biofilm for advanced wastewater treatment. J. Microbiol. 45, 113-121.
  20. Quan, Z.X., B.S. Lim, H. Kang, K.Y. Yoon, and Y.G. Yoon. 2006. Diversity of nitrifying and denitrifying bacteria in SMMIAR Process. J. Korea Soc. Water Qual. 22, 1014-1021.
  21. Roling, W.F.M., B.M. van Breukelen, M. Braster, M.T. Goeltom, J. Groen, and H.W. van Verseveld. 2000. Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb. Ecol. 40, 177-188.
  22. Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  23. Sandaa, R.A., V. Torsvik, and O. Enger. 2001. Influence of longterm heavy-metal contamination on microbial communities in soil. Soil Biol. Biochem. 33, 287-295. https://doi.org/10.1016/S0038-0717(00)00139-5
  24. Sung, G.M. 2010. Structure and characteristics of bacterial communities of the RABC process for food wastewater treatment. Ph.D. thesis. Daejeon University, Daejeon.
  25. Strous, M. and M.S. Jetten. 2004. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58, 99-117. https://doi.org/10.1146/annurev.micro.58.030603.123605
  26. Varadaraj, K. and D.M. Skinner. 1994. Denaturants or cosolvents improve the specificity of PCR amplification of a G+C rich DNA using genetically engineered DNA polymerases. Gene 140, 1-5. https://doi.org/10.1016/0378-1119(94)90723-4