성장 온도가 Rhodococcus sp. Strain DK17의 Megaplasmid 안정성에 미치는 영향

Heat Shock-Induced Physical Changes of Megaplasmids in Rhodococcus sp. Strain DK17

  • 김경선 (연세대학교 생명시스템대학 생물학과) ;
  • 김덕규 (극지연구소 극지생명과학연구부) ;
  • 박혜연 (연세대학교 생명시스템대학 생물학과) ;
  • 성정희 (연세대학교 생명시스템대학 생물학과) ;
  • 김응빈 (연세대학교 생명시스템대학 생물학과)
  • 투고 : 2010.12.22
  • 심사 : 2011.03.23
  • 발행 : 2011.03.31

초록

Rhodococcus sp. strain DK17은 3개의 linear catabolic megaplasmid (380 kb pDK1, 330 kb pDK2, 750 kb pDK3)를 보유하고 있다. Alkylbenzene 분해 유전자군(akbABCDEF)은 pDK2에만 위치하는 반면 phthalate 분해 유전자군의 경우에는 거의 동일한 copy가 pDK2 (ophA'B'C'R')와 pDK3 (ophABCR)에 각각 위치한다. DK17은 최적 성장온도인 $30^{\circ}C$에서 $37^{\circ}C$로 배양온도를 상승시키면 성장이 멈추지만 $30^{\circ}C$로 환원 즉시 다시 성장을 시작하였다. 이는 $37^{\circ}C$라는 온도 조건이 DK17에게 치명적이지는 않지만 스트레스로 작용함을 암시하는 것이다. 또한 $37^{\circ}C$에서 열충격을 받은 일부 세포는 o-xylene (alkylbenzene의 모델 화합물)을 분해 능력을 상실하였다. 열충격 후 200개의 집락을 무작위로 선택하여 pDK2- 또는 pDK3-specific 프라이머를 이용한 PCR과 pulsed-field gel electrophoresis를 통해 megaplasmid의 변화 양상을 비교 분석한 결과, 29개 돌연변이체에서 야생형의 것과 다른 5가지 megaplasmid 유형[pDK2 소실과 함께 새로운 약 700 kb megaplasmid 출현(10개), pDK2만 소실(9개), pDK3 소실과 함께 새로운 약 400 kb megaplasmid 출현(8개), pDK3만 소실(1개), 그리고 pDK2와 pDK3 소실과 함께 각각 약 400 kb와 700 kb 크기의 새로운 megaplasmid 출현(1개)]이 관찰되었다. 이상의 연구 결과는 성장 온도 변화가 세균 유전체의 물리적 변화를 직접 유도할 수 있음을 입증하는 것으로 온도 변화를 비롯한 서식지 환경 변화가 세균 진화에 상당한 영향력을 미칠 수 있음을 보여준다.

Rhodococcus sp. strain DK17 possesses three megaplasmids (380 kb pDK1, 330 kb pDK2, and 750 kb pDK3). The alkylbenzene-degrading genes (akbABCDEF) are present on pDK2 while the phthalate operons which are duplicated are present on both pDK2 (ophA'B'C'R') and pDK3 (ophABCR). DK17 with an optimal temperature of $30^{\circ}C$ showed no growth at $37^{\circ}C$. When transferred to $30^{\circ}C$, however, the $37^{\circ}C$ culture began to grow immediately, indicating that $37^{\circ}C$ is not lethal but stressful for DK17 growth. In addition, when exposed to $37^{\circ}C$ even for a short time, a part of DK17 cells lost the ability to degrade o-xylene (a model compound of alkylbenzenes). When two hundred colonies were randomly selected for colony PCR for pDK2-specific akbC, ophC', or pDK3-specific ophC, a total of 29 colonies were found to have lost at least one of the three genes. PFGE analysis clearly showed that all the mutants have different megaplasmid profiles from that of DK17 wild type, which are divided into five different cases: Type I (10 mutants, pDK2 loss and acquisition of a new ~700 kb plasmid), Type II (9 mutants, pDK2 loss), Type III (8 mutants, pDK3 loss and acquisition of a new ~400 kb plasmid), Type IV (1 mutant, pDK3 loss), and Type V (1 mutant, pDK2 and pDK3 loss and acquisition of the ~400 kb and ~700 kb plasmids). The above results showing that growth temperature changes can induce physical changes in bacterial genomes suggest that environmental changes in habitats including temperature fluctuations affect significantly the evolution of bacteria.

키워드

참고문헌

  1. Baitsch, D., C. Sandu, R. Brandsch, and G.L. Igloi. 2001. Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J. Bacteriol. 183, 5262-5267. https://doi.org/10.1128/JB.183.18.5262-5267.2001
  2. Banfalvi, Z., E. Kondorosi, and A. Kondorosi. 1985. Rhizobium meliloti carries two megaplasmids. Plasmid 13, 129-138. https://doi.org/10.1016/0147-619X(85)90065-4
  3. Barton, B.M., G.P. Harding, and A.J. Zuccarelli. 1995. A general method for detecting and sizing large plasmids. Anal. Biochem. 226, 235-240. https://doi.org/10.1006/abio.1995.1220
  4. Basta, T., A. Keck, J. Klein, and A. Stolz. 2004. Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J. Bacteriol. 186, 3862-3872. https://doi.org/10.1128/JB.186.12.3862-3872.2004
  5. Broker, D., M. Arenskotter, A. Legatzki, D.H. Nies, and A. Steinbuchel. 2004. Characterization of the 101-kilobase-pair megaplasmid pKB1, isolated from the rubber-degrading bacterium Gordonia westfalica Kb1. J. Bacteriol. 186, 212-225. https://doi.org/10.1128/JB.186.1.212-225.2004
  6. Choi, K.Y., D. Kim, J.C. Chae, G.J. Zylstra, and E. Kim. 2007. Requirement of duplicated operons for maximal metabolism of phthalate by Rhodococcus sp. strain DK17. Biochem. Biophys. Res. Commun. 357, 766-771. https://doi.org/10.1016/j.bbrc.2007.04.009
  7. Choi, K.Y., D. Kim, W.J. Sul, J.C. Chae, G.J. Zylstra, Y.M. Kim, and E. Kim. 2005. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol. Lett. 252, 207-213. https://doi.org/10.1016/j.femsle.2005.08.045
  8. Danko, A.S., M. Luo, C.E. Bagwell, R.L. Brigmon, and D.L. Freedman. 2004. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride. Appl. Environ. Microbiol. 70, 6092-6097. https://doi.org/10.1128/AEM.70.10.6092-6097.2004
  9. Dib, J.R., M. Wagenknecht, R.T. Hill, M.E. Farias, and F. Meinhardt. 2010. Novel linear megaplasmid from Brevibacterium sp. isolated from extreme environment. J. Basic Microbiol. 50, 280-284. https://doi.org/10.1002/jobm.200900332
  10. Hiraga, S. 2000. Dynamic localization of bacterial and plasmid chromosomes. Annu. Rev. Genet. 34, 21-59. https://doi.org/10.1146/annurev.genet.34.1.21
  11. Hogrefe, C. and B. Friedrich. 1984. Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 12, 161-169. https://doi.org/10.1016/0147-619X(84)90040-4
  12. Igloi, G.L. and R. Brandsch. 2003. Sequence of the 165-kilobase catabolic plasmid pAO1 from Arthrobacter nicotinovorans and identification of a pAO1-dependent nicotine uptake system. J. Bacteriol. 185, 1976-1986. https://doi.org/10.1128/JB.185.6.1976-1986.2003
  13. Indest, K.J., C.M. Jung, H. Chen, D. Hancock, C. Florizone, L.D. Eltis, and F.H. Crocker. 2010. Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl. Environ. Microbiol. 76, 6329-6337. https://doi.org/10.1128/AEM.01217-10
  14. Jakimowicz, D., K. Chater, and J. Zakrzewska-Czerwinska. 2002. The ParB protein of Streptomyces coelicolor A3(2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. Mol. Microbiol. 45, 1365-1377. https://doi.org/10.1046/j.1365-2958.2002.03102.x
  15. Keck, A., D. Conradt, A. Mahler, A. Stolz, R. Mattes, and J. Klein. 2006. Identification and functional analysis of the genes for naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6. Microbiology 152, 1929-1940. https://doi.org/10.1099/mic.0.28783-0
  16. Kim, D., Y.S. Kim, S.K. Kim, S.W. Kim, G.J. Zylstra, Y.M. Kim, and E. Kim. 2002. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl. Environ. Microbiol. 68, 3270-3278. https://doi.org/10.1128/AEM.68.7.3270-3278.2002
  17. Kim, D., S. Shin, K.Y. Choi, and E. Kim. 2008. Temperatureinduced loss of linear catabolic megaplasmid (pDK2) in Rhodococcus sp. strain DK17, Abstr. B-031, p. 145. Abstr. 2008 Int. Meet. Kor. Microbiol. Soc.
  18. Konig, C., D. Eulberg, J. Groning, S. Lakner, V. Seibert, S.R. Kaschabek, and M. Schlömann. 2004. A linear megaplasmid, p1CP, carrying the genes for chlorocatechol catabolism of Rhodococcus opacus 1CP. Microbiology 150, 3075-3087. https://doi.org/10.1099/mic.0.27217-0
  19. McLeod, M.P., R.L. Warren, W.W. Hsiao, N. Araki, M. Myhre, C. Fernandes, D. Miyazawa, W. Wong, A.L. Lillquist, D. Wang, and et al. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc. Natl. Acad. Sci. USA 103, 15582-15587. https://doi.org/10.1073/pnas.0607048103
  20. Mongodin, E.F., N. Shapir, S.C. Daugherty, R.T. Deboy, J.B. Emerson, A. Shvartzbeyn, D. Radune, J. Vamathevan, F. Riggs, V. Grinberg, and et al. 2006. Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet. 2, 2094-2106.
  21. Pang, X., Y. Sun, J. Liu, X. Zhou, and Z. Deng. 2002. A linear plasmid temperature-sensitive for replication in Streptomyces hygroscopicus 10-22. FEMS Microbiol. Lett. 208, 25-28. https://doi.org/10.1111/j.1574-6968.2002.tb11055.x
  22. Rosenberg, C., P. Boistard, J. Denarie, and F. Casse-Delbart. 1981. Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol. Gen. Genet. 184, 326-333.
  23. Saeki, H., M. Akira, K. Furuhashi, B. Averhoffl, and G. Gottschalkl. 1999. Degradation of trichloroethene by a linearplasmidencoded alkene monooxygenase in Rhodococcus corallinus (Nocardia corallina) B-276. Microbiology 145, 1721-1730. https://doi.org/10.1099/13500872-145-7-1721
  24. Shimizu, S., H. Kobayashi, E. Masai, and M. Fukuda. 2001. Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 67, 2021-2028. https://doi.org/10.1128/AEM.67.5.2021-2028.2001
  25. Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43, 159-271. https://doi.org/10.1099/00221287-43-2-159
  26. Stecker, C., A. Johann, C. Herzberg, B. Averhoff, and G. Gottschalk. 2003. Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J. Bacteriol. 185, 5269-5274. https://doi.org/10.1128/JB.185.17.5269-5274.2003