Isolation and Characteristics of Endolichenic Fungi Producing Antifungal Compound

항진균성 물질을 생산하는 지의류 내생 곰팡이의 선별 및 특성

  • Hwang, Hyun-Gook (Department of Biological Sciences, Sunchon National University) ;
  • Kim, Yi-Na (Department of Biological Sciences, Sunchon National University) ;
  • Baik, Keun-Sik (Department of Biological Sciences, Sunchon National University) ;
  • Choi, Sang-Ki (Department of Biological Sciences, Sunchon National University)
  • 황현국 (순천대학교 생명산업과학대학 생물학과) ;
  • 김이나 (순천대학교 생명산업과학대학 생물학과) ;
  • 백근식 (순천대학교 생명산업과학대학 생물학과) ;
  • 최상기 (순천대학교 생명산업과학대학 생물학과)
  • Received : 2011.02.10
  • Accepted : 2011.03.28
  • Published : 2011.03.31

Abstract

To isolate a novel antifungal compound, we obtained 107 kinds of endolichenic fungi from Lichen Bioresources Center and examined their antifungal capability. Two fungi EL123 and EL156 showed high antifungal activity against Candida albicans in both MYA and EMM media. Nucleotide sequence analysis and NCBI Blast analysis in ITS region including 5.8S rRNA revealed that EL123 has 95% homology with Thielavia microspora and EL156, 99% with Cryptosporiopsis diversispora which belong to Ascomycetes. It observed that EL156 formed a branched mycelium whereas EL123 formed a straight one. EL156 also produced the antifungal substance faster than EL123 when they grew on MY liquid medium.

새로운 항진균성물질을 분리할 목적으로 지의류은행에서 107종의 지의류 내생 곰팡이를 분양받아 이들의 항진균성 활성을 조사하였다. Candida albicans를 이용한 항진균 활성검사에서 2종류의 지의류 내생 곰팡이 EL123과 EL156을 최종적으로 선별하였다. 이들은 MYA 배지와 EMM 배지에서 공통적으로 높은 곰팡이 성장저해능을 보였다. 지의류 내생 곰팡이의 5.8S rRNA를 포함하고 있는 internal transcribed spacer 부분을 PCR 증폭 후 nucleotide sequence 분석 및 NCBI Blast 분석 결과 EL123 (JF714250)은 Thielavia microspora와 염기서열이 95%의 유사도를 보였고, EL156 (JF714251)은 Cryptosporiopsis diversispora와 99%의 유사도를 보였으며, 2종 모두 자낭균류(ascomycetes)에 속하였다. 형태적 특성으로는 EL123은 가지 친 형태의 균사가 관찰되었고, EL156은 직선형의 균사가 관찰되었으며, EL156이 EL123보다 액체배양 중에 많은 양의 항진균성 물질을 생성하였다.

Keywords

References

  1. Arnold, A.E. 2007. Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol. Rev. 21, 51-66. https://doi.org/10.1016/j.fbr.2007.05.003
  2. Dams, E., L. Hendriks, Y. Van de Peer, J.M. Neefs, G. Smits, I. Vandenbempt, and R. De Wachter. 1988. Compilation of small rinbosomal subunit RNA sequences. Nucleic Acids Res. 16(Sup.), r87-r173. https://doi.org/10.1093/nar/16.suppl.r87
  3. Ding, G., Y. Li., S. Fu, S. Liu, J. Wei, and Y.J. Che. 2009. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. Nat. Prod. 72, 182-186. https://doi.org/10.1021/np800733y
  4. Dorn, R.I. and T.M. Oberlander. 1981. Microbial origin of desert varnish. Science 213, 1245-1247. https://doi.org/10.1126/science.213.4513.1245
  5. Gardes, M. and T.D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  6. Hale, M.E. 1983. The Biology of Lichens. 3rd ed. Contemporary Biology Series, Baltimore, USA.
  7. Huneck, S. and I. Yoshimura. 1996. Identification of Lichen Products. Springer Verlag, Berlin, Germany.
  8. Paranagama, P.A., E.M.K. Wijeratne, A.M. Burns, M.T. Marron, M.K. Gunatilaka, A.E. Arnold, and A.A.L. Gunatilaka. 2007. Heptaketides from Corynespora sp. inhabiting the Cavern Beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. J. Nat. Prod. 70, 1700-1705. https://doi.org/10.1021/np070466w
  9. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.