References
- Beppu, T. and S. Horinouchi. 1991. Molecular mechanisms in Streptomyces. Planta Medica. 57, 44-47.
- Chang, H.B., S.C. Kim, and J.H. Kim. 2006. Chemical characteristics and biological activities of herbimycin A and dihydroherbimycin A produced by soil isolated Streptomyces sp. J. Microbiol. 42, 47-53.
- Datta, K., S. Shiha, and P. Chattopadhyay. 2000. Reactive oxygen species in health and disease. Natl. Med. J. India 13, 304-310.
- Droscher, I. and J. Waringer. 2007. Abundance and microhabitats of freshwater sponges (Spongillidae) in a Danubean floodplain in Austria. Freshw. Biol. 52, 998-1008. https://doi.org/10.1111/j.1365-2427.2007.01747.x
- Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker, and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68, 4431-4440. https://doi.org/10.1128/AEM.68.9.4431-4440.2002
- Jones, G.H. 1985. Regulation of phenoxazinone synthase expression in Streptomyces antibiotics. J. Bacteriol. 163, 1215-1221.
- Kin, S.L. 2006. Diversity of novel metabolites from marine Actinomycetes. Curr. Opin. Microbiol. 9, 245-251. https://doi.org/10.1016/j.mib.2006.03.004
- Manconi, R. and R. Pronzato. 2008. Global diversity of sponges (Porifera: Spongillia) in freshwater. Hydrobiologia 595, 27-33. https://doi.org/10.1007/s10750-007-9000-x
- Masuda, Y. 2009. Studies on the taxonomy and distribution of freshwater sponges in Lake Baikal. Prog. Mol. Subcell. Biol. 47, 81-110.
- Muller, W.E., G.M. Bohm, V.A. Grebenjuk, A. Skorokhod, I.M. Muller, and V. Gamulin. 2002. Conservation of the positions of metazoan introns from sponges to humans. Gene 295, 299-309. https://doi.org/10.1016/S0378-1119(02)00690-X
- Neicolaou, K.C., E.A. Theodorakis, and C.F. Chaibome. 1996. Chemistry and biology of selected natural products. Pure Appl. Chem. 11, 2129-2136.
- Parfenova, V.V., I.A. Terkina, T.I. Kostornova, I.G. Nikulina, V.I. Chernykh, and E.A. Maksimova. 2008. Microbial community of freshwater sponges in Lake Baikal. Biol. Bulletin 35, 374-379. https://doi.org/10.1134/S1062359008040079
- Piel, J. 2006. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39-50. https://doi.org/10.2174/092986706775197944
- Reiswig, H. 1974. Water transport, respiration and energetics of three tropical marine sponges. J. Exp. Mar. Biol. Ecol. 14, 231-246. https://doi.org/10.1016/0022-0981(74)90005-7
- Shigeo, S., E. Nakanishi, K. Furihata, K. Miyamoto, H. Tsujibo, T. Watanabe, Y. Ohnishi, S. Horinouchi, H. Nagasawa, and S. sakuda. 2008. Chitinase inhibitor allosamidin promotes chitinase production of Streptomyces generally. Inter. J. Biol. Macromol. 43, 13-19. https://doi.org/10.1016/j.ijbiomac.2007.09.010
- Shin, J. 1991. Mid-and Long-term Reserch Plan on Marine Natural Products. KORDI.
- Tanka, Y. and S. Omura. 1990. Metabolism and products of Actinomycetes an introduction. Actinomycetal 4, 13-14. https://doi.org/10.3209/saj.4_13
- Vacelet, J. 1975. Etude en microscopie Electronique de l'association entre bacteries et spongiaires du genre Verongia. J. Microsc. Biol. Cell. 23, 271-288.
- Wehrl, M. 2001. Masters thesis. Universitat Wurzburg, Wurzburg, Germany.
- Weinberg, X.D. 1974. Secondary metabolism: Control by temperature and inorganic phosphate. Dev. Ind. Microbiol. 15, 70-81.
- Wiens, M., P. Wrede, V.A. Grebenjuk, O.V. Kaluzhnaya, S.I. Belikov, H.C. Schruder, and W.E. Muller. 2009. Towards a molecular systematics of the Lake Baikal/Lake Tuva sponges. Prog. Mol. Subcell. Biol. 47, 111-144.
- Zahner, H. 1985. The secondary metabolism of microorganisms: An inexhaustible source for new products. Pestic. Sci. 16, 424-425.