Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV

$TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해

  • Ekpeghere, Kalu I. (Department of Environmental Engineering, Korea Maritime University) ;
  • Koo, Jin-Heui (Division of Marine Equipment Engineering, Korea Maritime University) ;
  • Kim, Jong-Hyang (Institute of Health & Environment at Gyeongnam Provincial Government) ;
  • Lee, Byeong-Woo (Division of Marine Equipment Engineering, Korea Maritime University) ;
  • Yi, Sam-Nyung (Department of Nano Semiconductor Engineering, Korea Maritime University) ;
  • Kim, Yun-Hae (Division of Marine Equipment Engineering, Korea Maritime University) ;
  • Koh, Sung-Cheol (Department of Environmental Engineering, Korea Maritime University)
  • ;
  • 구진희 (한국해양대 조선기자재공학부) ;
  • 김종향 (경남보건환경연구원) ;
  • 이병우 (한국해양대 조선기자재공학부) ;
  • 이삼녕 (한국해양대 나노반도체공학과) ;
  • 김윤해 (한국해양대 조선기자재공학부) ;
  • 고성철 (한국해양대 환경공학과)
  • Received : 2011.06.14
  • Accepted : 2011.06.28
  • Published : 2011.06.30

Abstract

$TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

대나무 활성탄에 $TiO_2$의 코팅을 실시하여 이를 광촉매조건에서 16종의 주요 PAHs를 전처리하고 이를 PAHs 분해미생물에 의한 생분해과정에 적용하여 보다 효율적인 PAHs 처리 기술을 개발하고자 하였다. 대나무 활성탄에 anatase $TiO_2$의 성공적인 코팅이 가능하였으며 이를 이용한 메틸렌블루 용액의 광분해도 측정한 결과 $TiO_2$/AC 촉매가 첨가된 경우 가장 높은 촉매능을 보였다. PAHs 분해미생물이 없는 상태에서 naphthalene, acenaphthylene, acenaphthene 및 fluorene의 경우 각각 9.8, 76.2, 74.1 및 40.5%의 제거효율을 나타내었으나 고분자 PAHs는 $TiO_2$ 처리구에서 높은 잔류농도(400-1,000 ${\mu}g$/L)를 나타내었다. 한편 위의 전처리조건을 거친 후 분해미생물을 1주일간 처리할 경우 전반적인 PAHs가 340 ${\mu}g$/L 이하의 낮은 농도를 나타내었다. 여기서 phenanthrene, anthracene, fluoranthene 및 pyrene은 $TiO_2$의 처리구의 경우 대조구에 비해 각각 29.3, 61.4, 27.0 및 44.3%의 제거율을 나타내었다. $TiO_2$를 AC에 침착한 경우는 분해미생물이 AC 표면에 거의 생물막을 형성하지 못하는 모습이 관찰되었다. 따라서 $TiO_2$를 처리할 경우 분해미생물은 주로 부유상태(planktonic status)에서 PAHs를 분해하는 것으로 사료된다. 향후 보다 적절한 전처리조건을 확립할 경우 보다 효율적인 난분해성의 PAHs 처리기술의 개발이 가능할 것으로 전망된다.

Keywords

References

  1. Dong, D., P. Li, X. Li, C. Xu, D. Gong, Y. Zhanga, Q. Zhao, and P. Li. 2010. Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile $TiO_{2}$ under UV-irradiation. Chem. Engin. J. 158, 378-383. https://doi.org/10.1016/j.cej.2009.12.046
  2. Ekpeghere, K.I., H.J. Bae, S.H. Kwon, B.H. Kim, D.J. Park, and S.C. Koh. 2009. Clean-up of the crude oil contaminated marine sediments through biocarrier-mediated bioaugmentation. Kor. J. Microbiol. 45, 354-361.
  3. Freeman, D.J and F.C.R. Cattell. 1990. Woodburning as a source of atmospheric polycyclicaromatic hydrocarbons. Environ. Sci. Technol. 24, 1581-1585. https://doi.org/10.1021/es00080a019
  4. Fujishima, A., T.N. Rao, and D.A. Truk. 2000. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  5. Garcia, A. and J. Matos. 2010. Photocatalytic activity of $TiO_{2}$ on activated carbon under visible light in the photodegradation of phenol. Open Mater. Sci. J., 4, 2-4. https://doi.org/10.2174/1874088X01004020002
  6. Hanel, A., P. Moren, A. Zaleska, and J. Hupka. 2010. Photocatalytic activity of $TiO_{2}$ immobilized on glass beads. Physicochem. Probl. Miner. Process 45, 49-56.
  7. Heitkamp, M.A. and C.E. Cerniglia. 1988. Mineralization of polycyclic aromatic hydrocarbonsby a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54, 1612-1614.
  8. Huang, Q.D. and C.S. Hong. 2000. $TiO_{2}$ photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere 41, 871-879. https://doi.org/10.1016/S0045-6535(99)00492-0
  9. Irland, J.C., B. Davila, H. Moreno, S.K. Fink, and S. Tassos. 1995. Heterogeneous photocatalytic decomposition of polyaromatic hydrocarbons over titanium dioxide. Chemosphere 30, 965-984. https://doi.org/10.1016/0045-6535(94)00452-Z
  10. Jian, Y., L. Wan, P.F. Peter, and H.T. Yu. 2004. Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat. Res. 557, 99-108. https://doi.org/10.1016/j.mrgentox.2003.10.004
  11. Kalf, D.F., T. Crommentuijn, and E.J. Van de Plassche. 1997. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons. Ecotoxicol. Environ. Saf. 36, 89-97. https://doi.org/10.1006/eesa.1996.1495
  12. Mahata, S. and D. Kundu. 2009. Hydrothermal synthesis of aqueous nano-$TiO_{2}$ sols. Mater. Sci.-Poland 27, 463-470.
  13. Matos, J., E. Garcia-Lopez, L. Palmisano, A. Garcia, and G. Marci. 2010. Influence of activated carbon in $TiO_{2}$ and ZnO mediated photo-assisted degradation of 2-propanol in gas-solid regime. App. Cataly. B: Environ. 99, 170-180. https://doi.org/10.1016/j.apcatb.2010.06.014
  14. Pelizzetti, E., C. Minero, V. Carlin, and E. Borgarello. 1992. Photocatalyticsoil decontamination. Chemosphere 25, 343-351.
  15. Song, K.C. and S.E Pratsinis. 2000. Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide. J. Mater. Res. 15, 2322-2329. https://doi.org/10.1557/JMR.2000.0334
  16. Vollmuth, S. and R. Niessner. 1995. Degradation of PCDD, PCDF, PAH, PCB and chlorinated phenols during the destruction-treatment of landfill seepage water in laboratory model reactor (UV, Ozone, and UV/Ozone). Chemosphere 30, 2317-2331. https://doi.org/10.1016/0045-6535(95)00104-G
  17. Yin, H., Y. Wada, T. Kitamura, and S. Yanagida. 2002. Novel synthesis of phase-pure nano-particulate anatase and rutile $TiO_{2}$ using $TiCl_{4}$ aqueous solutions. J. Mater. Chem. 12, 378-383. https://doi.org/10.1039/b105637a
  18. Zhang, L., P. Li, Z. Gonga, and X. Li. 2008. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using $TiO_{2}$ under UV light. J. Hazard. Mater. 158, 478-484. https://doi.org/10.1016/j.jhazmat.2008.01.119
  19. Zhao, X., X. Quan, H.M. Zhao, S. Chen, J.W. Chen, and Y.Z. Zhao. 2004. Different effects of humic substances on photodegradation of p,p-DDT on soil surfaces in the presence of $TiO_{2}$ under UV and visible light. J. Photochem. Photobiol. A167, 177-183.