DEAD-box RNA Helicase 유전자가 결핍된 Bacillus subtilis의 저온 충격 반응성과 저온 안정성 전사물

Cold Shock Response and Low Temperature Stable Transcript of DEAD-box RNA Helicase in Bacillus subtilis

  • Oh, Eun-Ha (Department of Life Science and Technology, Pai Chai University) ;
  • Lee, Sang-Soo (Department of Life Science and Technology, Pai Chai University)
  • 투고 : 2011.09.15
  • 심사 : 2011.11.11
  • 발행 : 2011.12.31

초록

Bacillus subtilis에 존재하는 DEAD-box RNA helicase 유전자의 결손이 저온 충격에 민감성을 보이는지를 조사하였다. 저온 충격에 민감한지를 알아 보기 위하여 대수기에($O.D_{600}$=0.5-0.6) 있는 세포를 $15^{\circ}C$도 낮추어 저온충격을 가하여 생장하는 정도를 조사하였다. DEAD-box RNA helicase 유전자 ydbR, yfmL, yqfR, deaD의 결손 균주들이 저온충격을 가하였을 때 ydbR 결손 균주의 생장이 야생형 균주에 비해 5배 정도 현저히 감소하였으나, 다른 DEAD-box RNA helicase 유전자의 (yfmL, yqfR, deaD) 결손은 야생형 균주와 비슷한 생장을 보였다. 저온에서의 유전자 발현을 알아보기 위하여 Northern blot으로 mRNA 양을 알아본 결과 $37^{\circ}C$에 비해 $15^{\circ}C$에서 ydbR과 yqfR의 mRNA전사물 증가를 확인할 수 있었고, 반면에 yfmL과 deaD의 전사 증가는 관찰되지 않았다. $37^{\circ}C$에서 $15^{\circ}C$로 저온 충격을 가하면 ydbR mRNA 양의 뚜렷한 증가를 확인하였고, 전사 억제제인 rifampicin를 처리하여 ydbR mRNA의 양을 조사하였을 때 $15^{\circ}C$ 조건에서는 mRNA 양이 거의 유지하는 반면에 $37^{\circ}C$ 조건에서는 급격한 mRNA의 감소가 일어나 전사과정에서 유도되기 보다는 전사 후 전사물의 안정에 기인하는 것으로 보인다. 이와 관련하여 ydbR 유전자의 5' UTR (untranaslated region) 부근에서 csp (cold shock protein) 유전자에서 관찰되는 cold box element를 확인하였고, ydbR이 저온 충격 조건에서 발현되는 과정이 csp와 유사하게 전사물의 안정성에 기인함을 알 수 있었다.

We investigated the cold shock sensitivity of DEAD-box RNA helicase gene deleted strains of in Bacillus subtilis CU1065. To understand cold shock effects, cells were cultivated at $37^{\circ}C$ to log phase ($O.D_{600}$=0.5-0.6) and then temperature was shifted to $15^{\circ}C$. Cold shock slow down the growth rate of wild type and deleted strains of DEAD-box RNA helicase gene (ydbR, yfmL, yqfR, deaD). The growth rate of ydbR deleted strain is 5 times severely reduced compared to that of wild type strain (CU1065). But the growth rate of other three (yfmL, yqfR, deaD) deleted strains is nearly equal to the growth rate of wild type. Compared to $37^{\circ}C$, the amount of ydbR and yqfR mRNA transcripts are increased at the growth temperature of $15^{\circ}C$. On the other hands the mRNA transcripts of yfmL and deaD are not changed at both conditions of $37^{\circ}C$ and $15^{\circ}C$. Upon cold shock treatment ydbR mRNA transcript is clearly increased. After treatment of rifampicin (bacteria transcription inhibitor) the amount of ydbR mRNA was measured. Temperature shift from $37^{\circ}C$ to $15^{\circ}C$ and rifampicin treatment showed slowly decay of ydbR mRNA. But at $37^{\circ}C$ and rifampicin treatment ydbR mRNA is rapidly reduced. These results showed that cold shock induction of ydbR mRNA resulted from the stability of ydbR mRNA and not from the transcription induction of ydbR. In relation to these results, we found the cold box element of csp (cold shock protein gene) in 5' untranslated region of ydbR gene. Cold shock induction of ydbR is caused by the stability of ydbR mRNA like the stability of csp mRNA.

키워드

참고문헌

  1. Ando, Y. and K. Nakamura. 2006. Bacillus subtilis DEAD protein YdbR possesses ATPase, RNA binding, and RNA unwinding activities. Biosci. Biotechnol. Biochem. 70. 1606-1615. https://doi.org/10.1271/bbb.50678
  2. Broeze, R.J., C.J. Solomon, and D.H. Pope. 1978. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134, 861-874.
  3. Carpousis, A.J., N.F. Vanzo, and L.C. Raynal. 1999. mRNA degradation. A tale of poly(A) and multiprotein machines. Trends Genet. 15, 24-28. https://doi.org/10.1016/S0168-9525(98)01627-8
  4. Charollais, J., M. Dreyfus, and I. Iost. 2004. CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the bio genesis of 50S ribosomal subunit. Nucleic Acids Res. 32, 2751-2759. https://doi.org/10.1093/nar/gkh603
  5. Charollais, J., D. Pflieger, J. Vinh, M. Dreyfus, and I. Iost. 2003. The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. Mol. Microbiol. 48, 1253-1265. https://doi.org/10.1046/j.1365-2958.2003.03513.x
  6. El-Sharoud, W.M. and P.L. Graumann. 2006. Cold shock proteins aid coupling of transcription and translation in bacteria. Sci. Prog. 90, 15-27.
  7. Fang, L., W. Jiang, W. Bae, and M. Inouye. 1997. Promoterindependent cold shock induction of cspA and its derepression at $37^{\circ}C$ by mRNA stabilization. Mol. Microbiol. 23, 355-364. https://doi.org/10.1046/j.1365-2958.1997.2351592.x
  8. Fang, L., Y. Hou, and M. Inouye. 1988. Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transcript expression at low temperature in Escherichia coli. J. Bacteriol. 180, 90-95.
  9. Friedman, H., P. Lu, and A. Rich. 1971. Temperature control of initiation of protein synthesis in Escherichia coli. J. Mol. Biol. 61, 105-121. https://doi.org/10.1016/0022-2836(71)90209-9
  10. Hall, M.N., J. Gabay, M. Debarbouille, and M. Schwarz. 1982. A role for messenger-RNA secondary structure in the control of translation initiation. Nature 295, 616-618. https://doi.org/10.1038/295616a0
  11. Hunger, K., C.L. Beckering, F. Wiegeshoff, P.L. Graumann, and M.A. Marahiel. 2006. Cold-induced putative DEAD-box RNA helicase CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus sutilis. J. Bacteriol. 188, 240-248. https://doi.org/10.1128/JB.188.1.240-248.2006
  12. Jiang, W., Y. Hou, and M. Inouye. 1997. CspA, the major coldshock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196-202. https://doi.org/10.1074/jbc.272.1.196
  13. Lorsch, J.R. 2002. RNA chaperones exist and DEAD box proteins get a life. Cell 109, 797-800. https://doi.org/10.1016/S0092-8674(02)00804-8
  14. Miczak, A., V.R. Kaberdin, C-L. Wei, and S. Lin-Chao. 1996. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc. Natl. Acad. Sci. USA 93, 3865-3869. https://doi.org/10.1073/pnas.93.9.3865
  15. Oh, E.H. and S.S. Lee. 2010. Cold sensitive growth of deletion mutants of DEAD-box RNA helicase genes in Bacillus subtilis. Kor. J. Microbiol. 46, 233-239.
  16. Py, B., C.F. Higgins, H.M. Krish, and A.J. Carpousis. 1996. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381, 169-172. https://doi.org/10.1038/381169a0
  17. Rocak, S. and P. Linder. 2004. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232-241. https://doi.org/10.1038/nrm1335
  18. Sakamoto, T. and D.A. Bryant. 1997. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol. Microbiol. 23, 1281-1292. https://doi.org/10.1046/j.1365-2958.1997.3071676.x
  19. Sengoku, T., O. Nureki, A. Nakamura, S. Kobayashi, and S. Yokoyama. 2006. Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287-300. https://doi.org/10.1016/j.cell.2006.01.054
  20. Thieringer, H.A., P.G. Jones, and M. Inouye. 1998. Cold shock and adaptation. Bioassays 20, 49-57. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N
  21. Tsu, C. and O.C. Uhlenbeck. 1998. Kinetic analysis of the RNA-dependent adenosinetriphosphatase activity of DbpA, an Escherichia coli DEAD protein specific for 23S ribosomal RNA. Biochemistry 37, 16989-16996. https://doi.org/10.1021/bi981837y
  22. Wach, A. 1996. PCR-synthesis of marker carsettes with long-flanking homology regions for disruptions in S. cerevisiae. Yeast 8, 259-265.
  23. Wistow, G. 1990. Cold shock and DNA binding. Nature 344, 823-824.
  24. Wolffe, A.P., S. Tafuri, M. Ranjan, and M. Familari. 1992. The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 4, 290-298.