김치유래 Lactobacillus sakei OPK2-59의 ${\gamma}$-Aminobutyric Acid 생성 및 Glutamate Decarboxylase 활성

${\gamma}$-Aminobutyric Acid Production and Glutamate Decarboxylase Activity of Lactobacillus sakei OPK2-59 Isolated from Kimchi

  • 유진주 (우석대학교 식품생명공학과) ;
  • 오석흥 (우석대학교 식품생명공학과)
  • Yu, Jin-Ju (Department of Food and Biotechnology, Woosuk University) ;
  • Oh, Suk-Heung (Department of Food and Biotechnology, Woosuk University)
  • 투고 : 2011.11.30
  • 심사 : 2011.12.20
  • 발행 : 2011.12.31

초록

김치로부터 분리한 유산균 Lactobacillus sakei OPK2-59는 ${\gamma}$-aminobutyric acid (GABA) 생성능력과 glutamate decarboxylase(GAD) 활성을 보유하고 있음이 확인되었다. Lactobacillus sakei OPK2-59를 59.13 mM과 177.40 mM monosodium glutamate (MSG)가 함유된 MRS 배지에서 배양하면 균주의 성장을 위한 최적 온도범위와 pH는 각각 $25-37^{\circ}C$와 6.5였다. 59.13 mM과 177.40 mM MSG 함유 MRS 배지에서 배양온도 $25^{\circ}C$ 조건에서, 48시간 배양하였을 경우 MSG의 GABA 전환율은 각각 99.58%와 31.00%였다. 또한 Lactobacillus sakei OPK2-59 세포추출액을 이용하여 MSG를 GABA로 전환할 수 있었으며, 추출물에 의한 GABA 전환율은 $30^{\circ}C$, pH 5 조건에서 78.51%로 가장 높았다. 세포추출액에 의한 MSG의 GABA 전환에 미치는 무기염의 영향을 조사한 결과 $CaCl_2$, $FeCl_3$, $MgCl_2$를 첨가한 반응액에서 염을 넣지 않고 반응한 control보다 GABA 전환율이 2-3배 증진되는 것으로 조사되었다. 이러한 결과들은 김치 유산균 Lactobacillus sakei OPK2-59의 GABA 생성능은 유산균 세포 내에 존재하는 GAD에 의한 것이며, GAD에 의한 GABA 전환율은 무기염에 의하여 증진될 수 있음을 제안해 주는 것이다.

Lactobacillus sakei OPK2-59 isolated from kimchi was found to have ${\gamma}$-aminobutyric acid (GABA) producing ability and glutamate decarboxylase (GAD) activity. When the Lactobacillus sakei OPK2-59 was cultured in MRS broth with 59.13 mM and 177.40 mM monosodium glutamate (MSG), the optimum temperature range and pH for growth were $25-37^{\circ}C$ and pH 6.5, respectively. GABA conversion rates in MRS broth with 59.13 mM and 177.40 mM MSG were 99.58% and 31.00%, respectively at $25^{\circ}C$ and 48 h of cultivation. By using the cell free extract of Lactobacillus sakei OPK2-59, MSG was converted to GABA and the conversion rate was 78.51% at $30^{\circ}C$, pH 5. Conversion of MSG to GABA was enhanced by adding salts such as $CaCl_2$, $FeCl_3$, $MgCl_2$. These data suggest that the ability of Lactobacillus sakei OPK2-59 to produce GABA results from the activity of GAD in the cells and GABA conversion by the cell extract containing GAD can be enhanced by $CaCl_2$, $FeCl_3$, $MgCl_2$.

키워드

참고문헌

  1. Abe, Y., S. Umemura, K. Sugimotto, N. Hirawa, Y. Kato, T. Yokoyama, J. Iwai, and M. Ishii. 1995. Effect of green tea rich in ${\gamma}$-aminobutyric acid on blood pressure on dahl salt-sensitive rats. Am. J. Hypertens. 8, 74-79. https://doi.org/10.1016/0895-7061(94)00141-W
  2. Aoki, H., Y. Furuya, Y. Endo, and K. Fujimoto. 2003. Effect of ${\gamma}$-aminobutyric tempeh-like fermented soybean (GABA-tempeh) on the blood pressure of spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 67, 1806-1808. https://doi.org/10.1271/bbb.67.1806
  3. Bae, M.O., H.J. Kim, Y.S. Cha, M.K, Lee, and S.H. Oh. 2009. Effects of kimchi lactic acid bacteria Lactobacillus sp. OPK2-59 with high GABA producing capacity on liver function improvement. J. Korean Soc. Food Sci. Nutr. 38, 1499-1505. https://doi.org/10.3746/jkfn.2009.38.11.1499
  4. Baum, G., L.Y. Simcha, Y. Fridmann, T. Arazi, H. Katsnelson, and M. Zik. 1996. Calmodulin binding to glutamate decarboxylase is required for regulation and GABA metabolism and normal development in plants. EMBO J. 15, 2988-2996.
  5. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  6. Cho, Y.R., J.Y. Chang, and H.C. Chang. 2007. Production of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17, 104-109.
  7. Han, H.L. 1991. The ecology of kimchi lactic acid bacteria. Korean J. Microbiol. 7, 68-75.
  8. Hayakawa, K., M. Kimura, K. Kasaha, K. Matsumoto, H. Sansawa, and Y. Yamori. 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92, 411-417. https://doi.org/10.1079/BJN20041221
  9. Hur, H.J., K.W. Lee, H.Y. Kim, D.K. Chung, and H.J. Lee. 2006. In vitro immunopotentiating activities of cellular fractions of lactic acid bacteria isolated from kimchi and bifidobacteria. J. Microbiol. Biotechnol. 16, 661-666.
  10. Kim, S., M.Y. Cho, J.H. Lee, and S.Y. Lee. 2006. Studies on the activities and prospects of the Codex alimentarius commission. Food Sci. Indus. 39, 25-40.
  11. Kim, J.H., M.J. Kwon, S.Y. Lee, J.D. Ryu, G.S. Moon, H.S. Cheigh, and Y.O. Song. 2002. The effect of kimchi intake on production of free radicals and anti-oxidative enzyme actitivies in the liver of SAM. J. Korean Soc. Food Sci. Nutr. 31, 109-116. https://doi.org/10.3746/jkfn.2002.31.1.109
  12. Kim, S.H., J.Y. Yang, S.A. Kang, H.K. Chun, and K.Y. Park. 2007. Current state and improvement for Korean kimchi industry. Food Indus. Nutr. 12, 7-13.
  13. Komatsuzaki, N., T. Nakamura, T. Kimura, and J. Shima. 2008. Characterization of glutamate decarboxylase from a high ${\gamma}$-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci. Biotechnol. Biochem. 72, 278-285. https://doi.org/10.1271/bbb.70163
  14. Kook, M.C., M.J. Seo, C.I. Cheigh, Y.R. Pyun, S.C. Cho, and H. Park. 2010. Enhanced production of ${\gamma}$-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20, 763-766.
  15. Krogsgaard-Larsen, P. 1989. GABA receptors. p. 349-383. In M. Williams, R.A. Glennon, and P.M.W.M. Timmermans (eds.), Receptor pharmacology funtion. Dekker, Inc., New York, USA.
  16. Lee, J.H. 2007. Kimchi lactic acid bacteria. e-Bioindustry News 20, 1.
  17. Lee, J.S., K.C. Lee, J.S. Ahn, T.I. Mheen, Y.R. Byun, and Y.H. Park. 2002. Weissella. koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52, 1257-1261. https://doi.org/10.1099/ijs.0.02074-0
  18. Leventhal, A.G., Y.C. Wang, M.L. Pu, Y.F. Zhou, and Y. Ma. 2003. GABA and its agonists improved visual cortical function in senescent monkeys. Science 300, 812-815. https://doi.org/10.1126/science.1082874
  19. Nakamura, T., T. Matsubaysahi, K. Kamachi, T. Hasegawa, Y. Ando, and M. Omori. 2000. ${\gamma}$-Aminobutyric (GABA)-rich chlorella depresses the elevation of blood pressure in spontaneously hypertensive rats (SHR). Nippon Nogeikagaku Kaishi (in Japanese) 74, 907-909.
  20. Nomura, M., H. Kimoto, Y. Someya, S. Furukawa, and I. Suzuki. 1999. Novel characterization for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris. Int. J. System Bacteriol. 49, 163-166. https://doi.org/10.1099/00207713-49-1-163
  21. Nomura, M., I. Nakajima, Y. Fujita, M. Kobayashi, H. Kimoto, I. Suzuki, and H. Aso. 1999. Lactococcus lactis contains only one glutamate decarboxylase gene. Microbiology 145, 1375-1380. https://doi.org/10.1099/13500872-145-6-1375
  22. Oh, S.H. 2006. GABA production and development of functional food products with enhanced levels of GABA using lactic acid bacteria from kimchi. Food Industry 24, 74-80.
  23. Oh, S.H. 2007. Effects and applications of germinated brown rice with enhanced levels of GABA. Food Sci. Indus. 40, 41-46.
  24. Oh, S.H., H.J. Kim, Y.H. Kim, J.J. Yu, K.B. Park, and J.I. Jeon. 2008. Changes in some physico-chemical properties and ${\gamma}$-aminobutyric acid content of kimchi during fermentation and storage. J. Food Sci. Nutr. 13, 219-224. https://doi.org/10.3746/jfn.2008.13.3.219
  25. Ohtsubo, S., S. Asano, K. Sato, and I. Matsumoto. 2000. Enzymatic production of ${\gamma}$-aminobutyric acid using rice (Oryza sativa) germ. Food Sci. Technol. Res. 6, 208-211. https://doi.org/10.3136/fstr.6.208
  26. Park, K.Y. 2004. Well-being and Well-being food. Health News 28, 18-19.
  27. Park, K.B. and S.H. Oh. 2006. Isolation and characterization of Lactobacillus buchneri strains with high ${\gamma}$-aminobutyric acid producing capacity from naturally aged cheese. Food Sci. Biotechnol. 15, 86-90.
  28. Park, K.B. and S.H. Oh. 2007. Cloning, sequencing and expression of a novel glutamate decarboxylase gene from a newly isolated lactic acid bacterium, Lactobacillus brevis OPK-3. Bioresource Technol. 98, 312-319. https://doi.org/10.1016/j.biortech.2006.01.004
  29. Park, K.B. and S.H. Oh. 2007. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technol. 98, 1675-1679. https://doi.org/10.1016/j.biortech.2006.06.006
  30. Sanders, J.W., K. Leenhouts, J. Burghoorn, R.J. Brands, G. Venema, and L. Kok. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27, 299-310. https://doi.org/10.1046/j.1365-2958.1998.00676.x
  31. Seok, J.H., K.B. Park, Y.H. Kim, M.O. Bae, M.K. Lee, and S.H. Oh. 2008. Production and characterization of Kimchi with enhanced levels of ${\gamma}$-aminobutyric acid. Food Sci. Biotechnol. 17, 940-946.
  32. Tsuji, K., T. Ichikawa, N. Tanabe, S. Abe, S. Tarui, and Y. Nakagawa. 1992. Antihypertensive activities of beni-koji extracts and ${\gamma}$-aminobutyric acid in spontaneously hypertensive rats. Eiyogaku. Zasshi (in Japanese) 50, 285-291. https://doi.org/10.5264/eiyogakuzashi.50.285
  33. Ueno, Y., K. Hayakawa, S. Takahashi, and K. Oda. 1997. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci. Biotechnol. Biochem. 61, 1168-1171. https://doi.org/10.1271/bbb.61.1168