참고문헌
- Albrecht, H., G.L. Denardo, and S.J. Denardo. 2006. Monospecific bivalent scFv-SH: effects of linker length and location of an engineered cysteine on production, antigen binding activity and free SH accessibility. J. Immunol. Methods 310, 100-116. https://doi.org/10.1016/j.jim.2005.12.012
- Bird, R.E., K.D. Hardman, J.W. Jacobson, S. Johnson, B.M. Kaufman, S.M. Lee, T. Lee, S.H. Pope, G.S. Riordan, and M. Whitlow. 1988. Single-chain antigen-binding proteins. Science 242, 423-426. https://doi.org/10.1126/science.3140379
- Brinkmann, U., M. Gallo, E. Brinkmann, S. Kunwar, and I. Pastan. 1993. A recombinant immunotoxin that is active on prostate cancer cells and that is composed of the Fv region of monoclonal antibody PR1 and a truncated form of Pseudomonas exotoxin. Proc. Natl. Acad. Sci. USA 90, 547-551. https://doi.org/10.1073/pnas.90.2.547
- Brinkmann, U., Y. Reiter, S.H. Jung, B. Lee, and I. Pastan. 1993. A recombinant immunotoxin containing a disulfidestabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90, 7538-7542. https://doi.org/10.1073/pnas.90.16.7538
- de Kruif, J. and T. Logtenberg. 1996. Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic antibody phage display library. J. Biol. Chem. 271, 7630-7634. https://doi.org/10.1074/jbc.271.13.7630
- Glockshuber, R., M. Malia, I. Pfitzinger, and A. Pluckthun. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29, 1362-1367. https://doi.org/10.1021/bi00458a002
- Huston, J.S., D. Levinson, M. Mudgett-Hunter, M.S. Tai, J. Novotny, M.N. Margolies, R.J. Ridge, R.E. Bruccoleri, E. Haber, R. Crea, and et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879-5883. https://doi.org/10.1073/pnas.85.16.5879
- Kim, J.K., M.F. Tsen, V. Ghetie, and E.S. Ward. 1994. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542-548. https://doi.org/10.1002/eji.1830240308
- Landschulz, W.H., P.F. Johnson, and S.L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764. https://doi.org/10.1126/science.3289117
- Lawn, A.M. and M.E. Rose. 1982. Mucosal transport of Eimeria tenella in the cecum of the chicken. J. Parasitol. 68, 1117-23. https://doi.org/10.2307/3281101
- Muller, K.M., K.M. Arndt, and A. Pluckthun. 1998. A dimeric bispecific miniantibody combines two specificities with avidity. FEBS Lett. 432, 45-49. https://doi.org/10.1016/S0014-5793(98)00829-1
- O'Shea, E.K., R. Rutkowski, and P.S. Kim. 1989. Evidence that the leucine zipper is a coiled coil. Science 243, 538-542. https://doi.org/10.1126/science.2911757
- Pack, P., M. Kujau, V. Schroeckh, U. Knupfer, R. Wenderoth, D. Riesenberg, and A. Pluckthun. 1993. Improved bivalent miniantibodies, with identical avidity as whole antibodies, produced by high cell density fermentation of Escherichia coli. Biotechnology (NY) 11, 1271-1277.
- Pack, P., K. Muller, R. Zahn, and A. Pluckthun. 1995. Tetravalent miniantibodies with high avidity assembling in Escherichia coli. J. Mol. Biol. 246, 28-34. https://doi.org/10.1006/jmbi.1994.0062
- Pack, P. and A. Pluckthun. 1992. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric FV fragments with high avidity in Escherichia coli. Biochemistry 31, 1579-1584. https://doi.org/10.1021/bi00121a001
- Park, K.J., D.W. Park, C.H. Kim, B.K. Han, T.S. Park, J.Y. Han, H.S. Lillehoj, and J.K. Kim. 2005. Development and characterization of a recombinant chicken single-chain Fv antibody detecting Eimeria acervulina sporozoite antigen. Biotechnol. Lett. 27, 289-295. https://doi.org/10.1007/s10529-005-0682-8
- Schoonjans, R., A. Willems, S. Schoonooghe, J. Leoen, J. Grooten, and N. Mertens. 2001. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain. Biomol. Eng. 17, 193-202. https://doi.org/10.1016/S1389-0344(01)00066-1
- Shan, D., O.W. Press, T.T. Tsu, M.S. Hayden, and J.A. Ledbetter. 1999. Characterization of scFv-Ig constructs generated from the anti-CD20 mAb 1F5 using linker peptides of varying lengths. J. Immunol. 162, 6589-6595.
- Todorovska, A., R.C. Roovers, O. Dolezal, A.A. Kortt, H.R. Hoogenboom, and P.J. Hudson. 2001. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods 248, 47-66. https://doi.org/10.1016/S0022-1759(00)00342-2
- Verma, R., E. Boleti, and A.J. George. 1998. Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J. Immunol. Methods 216, 165-181. https://doi.org/10.1016/S0022-1759(98)00077-5
- Winter, G., A.D. Griffiths, R.E. Hawkins, and H.R. Hoogenboom. 1994. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433-455. https://doi.org/10.1146/annurev.iy.12.040194.002245
- Wu, A.M., G.J. Tan, M.A. Sherman, P. Clarke, T. Olafsen, S.J. Forman, and A.A. Raubitschek. 2001. Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange. Protein Eng. 14, 1025-1033. https://doi.org/10.1093/protein/14.12.1025
- Yamanaka, H.I., T. Inoue, and O. Ikeda-Tanaka. 1996. Chicken monoclonal antibody isolated by a phage display system. J. Immunol. 157, 1156-1162.
- Young, N.M., C.R. MacKenzie, S.A. Narang, R.P. Oomen, and J.E. Baenziger. 1995. Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulphide bond. FEBS Lett. 377, 135-139. https://doi.org/10.1016/0014-5793(95)01325-3