DOI QR코드

DOI QR Code

Antioxidant Activities of Extracts from Fermented Mulberry (Cudrania tricuspidata) Fruit. and Inhibitory Actions on Elastase and Tyrosinase

꾸지뽕열매 발효 추출물의 항산화 특성과 Elastase 및 Tyrosinase 저해활성

  • Kang, Dae-Hun (Sangro Co. Ltd.) ;
  • Kim, Jae-Won (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu)
  • Received : 2010.10.28
  • Accepted : 2011.03.04
  • Published : 2011.04.30

Abstract

We evaluated the nutritional value of 70% ethanol extracts (EE) from fermented cudrania tricuspidata fruit (ECT: EE of C. tricuspidata, EFCT: EE of fermented C. tricuspidata, EFCTL: EE of fermented C. tricuspidata by B. licheniformis, EFCTS: EE of fermented C. tricuspidata by B. subtilis) by determined the total polyphenol and flavonoid contents, antioxidant activities, and inhibitory actions on elastase and tyrosinase. The yields of freeze-dried powder of ECT, EFCT, EFCTL, and EFCTS were 54.22%, 54.43%, 57.51%, and 57.23% (each w/w), respectively. The color of $L^*,\;a^*,\;b^*$ values decreased of fermented cudrania tricuspidata. The fermented EFCTL and EFCTS had relatively higher contents of total polyphenol and flavonoid than those of other extracts. ABTS radical scavenging ability were 94.61%, 95.85%, 94.36%, and 96.69%, respectively. SOD (superoxide dismutase)-like activities were in the order EFCT (32.60%) > EFCTS (27.10%) > EFCT (23.30%) > ECT (22.00%), and nitrite scavenging activity was in order of EFCTS (51.18%) > EFCTL (45.61%) > EFCT (41.93%) > ECT (27.76%), respectively. Ferrous ion chelating activity of EFCTL (67.34%) and EFCTS (60.36%) was significantly the highest, whereas ECT (52.34%) and EFCT (51.73%) had not different significantly. Xanthine oxidase, elastase and tyrosinase inhibitory activities at 0.5% (w/v) solutions of EFCTL and EFCTS were somewhat higher than those of non-fermented ECT. In conclusion, we provide experimental evidence that extracts of fermented cudrania tricuspidata of B. subtilis and B. licheniformis exhibited higher antioxidant activities and inhibitory actions on elastase and tyrosinase compared with non fermented cudrania tricuspidata.

발효 꾸지뽕열매의 기능성 소재으로서의 개발 가능성을 알아보고자 70% ethanol 추출물에 대한 항산화 활성과 elastase 및 tyrosinase 저해활성을 측정하였다. 실험군은 꾸지뽕열매 분말 70% ethanol 추출물(ECT), $40^{\circ}C$에서 48시간 발효시킨 분말의 70% ethanol 추출물(FECT), B. lichenifornis 균주로 $40^{\circ}C$에서 48시간 발효시킨 분말의 70% ethanol 추출물(FECTL), B. subtilis 균주로 $40^{\circ}C$에서 48시간 발효시킨 분말의 70% ethanol 추출물(FECTS) 각각을 동결건조하여 실험에 사용하였다. 수율은 ECT, EFCT, EFCTL 및 EFCTS가 각각 54.22%, 54.43%, 57.71% 및 57.23%로 높은 수율을 나타내었으며, 균주 발효 시 증가하는 경향을 보였다. L*, a* 및 b* 값은 발효 처리구에서 감소하였다. Total polyphenol 함량은 ECT 8.13 mg/g (w/w), EFCT 9.53 mg/g (w/w)로 EFCT가 ECT에 비하여 17.22%가 증가하였고, 균주발효군인 EFCTL (11.03 mg/g, w/w) 및 EFCTS (11.90 mg/g, w/w)는 ECT에 비하여 각각 35.67% 및 46.37%가 증가하였다. Total flavonoid 함량 역시 ECT 1.54 mg/g (w/w), EFCT 1.73 mg/g (w/w)로 EFCT가 ECT에 비하여 12.34%가 증가하였으며, EFCTL (1.94 mg/g, w/w) 및 EFCTS (1.85 mg/g, w/w)는 ECT에 비하여 각각 25.97% 및 20.13%가 증가하였다. ABS 라디칼 소거능은 ECT (94.61%), EFCT (95.85%), EFCTL (94.36%), EFCTS (96.69%)로 유사하였다. SOD 유사활성은 ECT (22.00%), EFCT(23.30%), EFCTL (32.60%), EFCTS (27.10%)로 EFCTL에서 높았으며 아질산염소거능에서도 유사한 경향을 나타내었다. Ferrous ion chelating 효과에서는 EFCTL (67.34%) > EFCTS (60.36%) > ECT (52.34%) > EFCT (51.73%) 순이었다. 발효처리군 EFCT, EFCTL 및 EFCTS는 무처리군 ECT에 비하여 xanthine oxidase 저해활성은 각각 9.53%, 38.66% 및 49.78%가, elastase는 19.93%, 86.19% 및 77.60%가, tyrosinase는 23.94%, 89.14% 및 78.86%가 증가하였으며 균주발효군에서 그 활성이 증가하였다. 이상의 결과, 발효 꾸지뽕열매 70% 에탄올 추출물은 항산화활성이 우수하여 기능성 증진용 소재 활용에 효과가 있을 것으로 판단된다.

Keywords

References

  1. Lee CB (1985) Dehanshikmuldogam, Hyangmoonsha, p 285
  2. Ottersen T, Vance B, Doorenbos NJ, Chang BL, El-Feraly FS (1997) The crystal structure of cudranone, 2,6,3'- trihydroxy-4-methoxy-2'-(3-methyl-2-butenyl)-benzophenone: A new antimicrobial agent from Cudrania chochinchinensis. Acta Chem Scnad, 31, 434-436
  3. Chen F, Nakashima N, Kimura I, Kimura M (1995) Hypoglycemic activity and mechanisms of extracts from mulberry leaves (folium mori) and cortex mori radicis in streptozotocin-induced diabetic mice. Ykugaku Zasshi, 115, 476-482
  4. Cha JY, Kim HJ, Jun BS, Cho YS (2000) Effects of water extract of leaves from Morus alba and Cudrania tricuspidata on the lipid concentration of serum and liver in rats. J Korean Soc Agric Chem Biotechnol, 43, 303-308
  5. Kang DG, Hur TY, Lee GM, Oh HC, Kwon TO, Sohn EJ, Lee HS (2002) Effects of Cudrania tricuspidata water extract on blood pressure and renal functions in no-dependent hypertension. Life Sci, 70, 2599-2609 https://doi.org/10.1016/S0024-3205(02)01547-3
  6. Lee IK, Kim CJ, Song KS, Kim HM, Koshino H, Uramoto M, Yoo ID (1996) Cytotoxic benzyldihydroflavonols from Cudrania tricuspidata. Phytochem, 41, 213-216 https://doi.org/10.1016/0031-9422(95)00609-5
  7. Oh PS, Lee HJ, Lim KT (2009) Inhibitory effect of glycoprotein isolated from Cudrania tricuspidata bureau on histamine release and COX-2 activity in RBL-2H3 cells. Korean J Food Sci Technol, 41, 405-412
  8. Kwon HY, Kim YS, Kwon GS, Kwon CS, Sohn HY (2004) Isolation of immuno-stimulating strain Bacillus pumilus jb-1 from Chungkook-jang and fermentation characteristics of jb1. Korean J Microbial Biotechnol, 32, 291-296
  9. Youn HK, Choi HS, Hur SH, Hong JH (2001) Antimicrobial activities of viscous substance form Chongkukjang fermented with different Bacillus spp. J Fdhyg Safety, 16, 188-193
  10. Shih IL, Van YT, Chang YN (2002) Application of statistical experimental methods to optimize production of poly (γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb Technol, 31, 213-220 https://doi.org/10.1016/S0141-0229(02)00103-5
  11. Lee TS, Choi JY (2005) Volatile flavor components in mash of Takju prepared by suing Aspergillus kawachii nuruks. Korean J Food Sci Technol, 37, 944-950
  12. Lee MY (2005) Quality and functional characteristics of chungkukjang fermented by Bacillus sp. isolated from commercial products. MS Thesis, Catholic University, Daegu, p 1-62
  13. Seo JH (2007) Modulation of functional properties of poly-γ-glutamic acid by chemical modification. PhD thesis, Keimyung University, Daegu, Korea
  14. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem, 50, 3010-3014 https://doi.org/10.1021/jf0115589
  15. Saleh ES, Hameed A (2008) Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem, 114, 1271-1277
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radial cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biol Chem, 47, 468-474
  18. Kato H, Lee I.E, Chuyen NV, Kim SB, Hayase F (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agri Bio Chem, 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  19. Yen GC, Duhb PD, Tsaia HL (2002) Antioxidant and pro-oxidant properties of ascorbic acid and garlic acid. Food Chem, 79, 307-313 https://doi.org/10.1016/S0308-8146(02)00145-0
  20. Stirpe F, Corte Della E (1969) The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem, 244, 3855-3863
  21. James AEK, Timothy DW, Gorden L (1996) Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic tyrosinase inhibitors. Biochem, 35, 9090-9096 https://doi.org/10.1021/bi953013b
  22. Jung SW, Lee NK, Kim SJ, Han DS (1995) Screening of tyrosinase inhibitor from plants. Korean J Food Sci Technol, 27, 891-896
  23. Cha JY, Jeong JJ, Kim YT, Seo WS, Yang HJ, Kim JS, Lee YS (2006) Detection of chemical characteristics in Hamcho (Salicornia herbacea) according to harvest periods. J Life Sci, 16, 683-690 https://doi.org/10.5352/JLS.2006.16.4.683
  24. Kwak EJ, Lim SI (2007) Effect of food additives on inhibiting the browning of model solution for doenjang. J Korean Soc Food Sci Nutr, 36, 589-594 https://doi.org/10.3746/jkfn.2007.36.5.589
  25. Baek LM (2009) Effect of soybean germination on the quality characteristics of Cheongkookjang inoculated with Bacillus licheniformis B-59 isolated from rice straw. MS Thesis, Catholic University, Daegu, Korea, P 34
  26. Lee SG, Kim HJ, Lee SP, Lee IS (2009) Antioxidant and anticancer activities of defatted soybean grits fermented by Bacillus subtilis NUC1. J Korean Soc Food Sci Nutr, 38, 657-662 https://doi.org/10.3746/jkfn.2009.38.6.657
  27. Kitani K, Minami C, Amamoto T, Kanai S, Ivy GO, Carrillo MC (2002) Pharmacological interventions in aging and age-associated disorders: potentials of propargylamines for human use. Ann NY Acad Sci, 959, 295-307 https://doi.org/10.1111/j.1749-6632.2002.tb02101.x
  28. Na GM, Han HS, Ye SH, Kim HK (2004) Physiological activity of medicinal plant extracts. Kor J Food Preserv, 11, 388-393
  29. Takashi Y, Yamamoto M, Tamura A (1978) Studies on the formation of nitrosamines; The effects of some polyphenols on nitrosation of diethylamine. J Food Hyg Soc, 19, 224-229 https://doi.org/10.3358/shokueishi.19.224
  30. Seo SJ, Choi Y, Lee SM, Kong S, Lee J (2008) Antioxidant activities and antioxidant compounds of some specialty rices. J Korean Soc Food Sci Nutr, 37, 129-135 https://doi.org/10.3746/jkfn.2008.37.2.129
  31. DeWitt DL, Rollins TE, Day JS, Gauger JA, Smith WL (1981) Orientation of the active site, and antigenic determinants of prostaglandin endoperoxide of synthase in the endoplasmic reticulum. J Biol Chem, 256, 10375-10382
  32. Jimenez M, Kameyama K, Maloy WL, Tomita Y, Hearing VJ (1988) Mammalian tyrosinase: biosynthesis, processing, and modulation by melanocyte-stimulating hormone. Proc Natl Acad Sci USA, 85, 3830-3834 https://doi.org/10.1073/pnas.85.11.3830
  33. Hatano T, Yasuhara T, Yoshihara R, Okuda T (1991) Inhibitory effects of galloylated flavonoids on xanthine oxidase. Planta Med, 57, 83-84 https://doi.org/10.1055/s-2006-960028
  34. Cha JY, Kim HW, Heo JS, Ahn HY, Eom KE (2010) Ingredients analysis and biological activity of fermented Angelica gigas Nakai by mold. J Life Sci, 20, 1385-1393 https://doi.org/10.5352/JLS.2010.20.9.1385
  35. Park SS, Ryu YB, Lee YH, Cho YU, Cho SJ, Choi YJ, Park KH, Gal SW (2007) Inhibition of melanin synthesis by mulberry leaf extract. J Life Sci, 17, 816-821 https://doi.org/10.5352/JLS.2007.17.6.816

Cited by

  1. Physicochemical Properties and Antioxidant Activities of Different Parts of Kkujippong (Cudrania tricuspidata Bureau) from Miryang vol.31, pp.4, 2015, https://doi.org/10.9724/kfcs.2015.31.4.510
  2. Chemical Constituents Isolated from the Root Bark ofCudrania tricuspidataand Their Potential Neuroprotective Effects vol.79, pp.8, 2016, https://doi.org/10.1021/acs.jnatprod.6b00204
  3. Antioxidant and Antibacterial Activities of Grape Pomace Fermented by Various Microorganisms vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1049
  4. Effect of Mulberry Leaf(Morus alba Linne) Powder Addition on Quality of Yukwa     vol.25, pp.4, 2015, https://doi.org/10.17495/easdl.2015.8.25.4.643
  5. Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.866
  6. Antioxidative Effects of Solvent Fractions from Nandina domestica Fruits vol.40, pp.10, 2011, https://doi.org/10.3746/jkfn.2011.40.10.1371
  7. Antioxidant, cytotoxic, and antidiabetic activities of Dendropanax morbifera extract for production of health-oriented food materials vol.18, pp.6, 2019, https://doi.org/10.5897/AJB2018.16694
  8. Comparison of Bioactive Compounds and Antioxidant Activities of Maclura tricuspidata Fruit Extracts at Different Maturity Stages vol.24, pp.3, 2019, https://doi.org/10.3390/molecules24030567
  9. 발효 꾸지뽕(Cudrania tricuspidata) 열매 추출물이 마우스 비장세포의 cytokine 생성에 미치는 영향 vol.23, pp.5, 2011, https://doi.org/10.5352/jls.2013.23.5.682
  10. 꾸지뽕나무 열매의 숙기별 식품학적 특성 vol.20, pp.3, 2011, https://doi.org/10.11002/kjfp.2013.20.3.330
  11. 발효 천마 추출물의 생리 활성 vol.32, pp.4, 2015, https://doi.org/10.12925/jkocs.2015.32.4.702
  12. 미생물 처리 발효 산삼배양근의 생리활성 변화 vol.24, pp.3, 2011, https://doi.org/10.7783/kjmcs.2016.24.3.191
  13. 반응표면분석법을 이용한 꾸지뽕의 블랜칭 처리 및 건조 조건 최적화 vol.24, pp.1, 2011, https://doi.org/10.11002/kjfp.2017.24.1.74
  14. 뽕잎 분말을 첨가한 쿠키의 품질특성 vol.32, pp.6, 2011, https://doi.org/10.7318/kjfc/2017.32.6.558
  15. 꼬리진달래 발효추출물의 이화학적 특성 및 생리활성 연구 vol.28, pp.8, 2011, https://doi.org/10.5352/jls.2018.28.8.938
  16. Antioxidant properties of Angelica dahurica extracts fermented by probiotics strains isolated from gimchi vol.35, pp.4, 2018, https://doi.org/10.12925/jkocs.2018.35.4.1276
  17. 꾸지뽕나무 열매에서 추출한 4'-O-methylalpinumisoflavone의 항산화 및 미백 효과 vol.33, pp.6, 2011, https://doi.org/10.15188/kjopp.2019.12.33.6.349
  18. 미숙감귤의 항산화 및 항노화 활성에 대한 평가 vol.36, pp.1, 2011, https://doi.org/10.6116/kjh.2021.36.1.77.
  19. Antioxidant Activities of Fermented Sophorae fructus, and Inhibitiory Actions on Tyrosinase and Elastase vol.50, pp.3, 2011, https://doi.org/10.3746/jkfn.2021.50.3.254