DOI QR코드

DOI QR Code

Navigation Control of Mobile Robot based on VFF to Avoid Local-Minimum in a Corridor Environment

복도환경의 지역최소점 회피가 가능한 VFF 기반의 이동로봇 주행제어

  • 진태석 (동서대학교 메카트로닉스공학과)
  • Received : 2010.12.28
  • Accepted : 2011.02.17
  • Published : 2011.04.30

Abstract

This paper deals with the method of using the amended virtual force field technique to avoidance the front environment(wall, obstacles etc.) in navigating by using the environmental informations recognized by a ultrasonic-ring and pan/tilt CCD camera equipped on a mobile robot. we will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. It is proposed the rusult from the experimental run based on a virtual force field(VFF) method to support the validity of the aforementioned architecture of mobile service robot for local navigation and obstacle avoidance for autonomous mobile robots. We will conclude by discussing some possible future extensions of the project. The results show that the proposed algorithm is apt to identify obstacles in an indoor environments to guide the robot to the goal location safely.

본 논문에서는 이동로봇에 장착된 초음파 센서 및 CCD 카메라를 통해 입력되는 환경정보에서 장애물을 인식 및 추출하여 주행전방의 환경을 구분하는 방법을 제시하였다. 복도 내에서 주행하는 로봇에 탑재된 초음파에 입력된 거리 데이터 정보에 의해 장애물을 검출하고 이동로봇이 미지의 동적인 환경을 초음파센서로 인지하여 지능적으로 목표점을 찾아가는 운행 알고리즘을 제안하고 검증하기 위한 실험결과를 제시하였다. 이동로봇에 다양한 센서 기술들을 이용하여 실내에서 활용하기 적합한 지능적 역할을 수행할 수 있는 다목적용 자율 이동 로봇에 환경인식을 위한 pan/tile 카메라(EVI-D30)를 장착하여 주행실험을 할 수 있도록 하였다. 제작한 로봇의 주행성능을 보이기 위해서 VFF 알고리즘을 적용하여 임의의 환경에서도 자율주행의 실험과 결과를 통해 제시한 방법에 대한 유효성을 검증하였다.

Keywords

References

  1. Johann Borenstein, "Real-Time Obstacle Avoidance for Fast Mobile Robots", IEEE Transactions on Systems, Man and Cybernetics, vol. 19, No. 5, September/October, 1989.
  2. Jun Tani and Naohiro Fukumura, "Learing Goal-Directed Sensory-Based Navigation of a Mobile Robot", Neural Networks, vol.7, No.3, 1994, pp. 553-563. https://doi.org/10.1016/0893-6080(94)90112-0
  3. J. C. Alexander and J. H. Maddocks, "On the kinematics of wheeled mobile robots", Int. J. of Robotics Research, vol. 8, no. 5,pp. 15-27, 1989. https://doi.org/10.1177/027836498900800502
  4. Brooks, R. A. "A Robust Layered Control System for a Mobile Robot", IEEE Journal of Robotics and Automation RA-2, 1986, pp.14-23
  5. A. Yilmaz, O. Javed, and M. Shah, "Object tracking: a survey," ACM Computing Surveys, vol. 38, no. 4, 2006.
  6. K.S. Tseng and C.W. Tang, "Self-localization and stream field based partially observable moving object tracking," EURASIP Journal on Advances in Signal Processing, vol. 2009, Article ID 416395, 12 pages, 2009.
  7. Y. Koren and J. Borenstein, "Potential field methods and their inherent limitations for mobile robot navigation," in Proc. IEEE International Conference on Robotics and Automation, vol. 2, 1991.
  8. J. Borenstein and Y. Koren, "The vector field histogram-fast obstacle avoidance for mobilerobots," IEEE Transactions on Robotics and Automation, vol. 7, no. 3, pp. 278-278, 1991. https://doi.org/10.1109/70.88137
  9. I. Ulrich and J Borenstein, "VFH^*: Local obstacle avoidance with look-ahead verification," in Proc. IEEE International Conference on Robotics and Automation, pp. 2505-2511, April 2000.
  10. K.-Y. Im and S.-Y. Oh, "An extended virtual force field based behavioral fusion with neural networks and evolutionary programming for mobile robot navigation," in Proceedings of the 2000 Congress on Evolutionary Computation, vol. 2, pp. 1238-1244, 2000.

Cited by

  1. 자율주행 이동로봇의 실시간 장애물 회피 및 안드로이드 인터페이스 구현 vol.9, pp.4, 2014, https://doi.org/10.14372/iemek.2014.9.4.237