DOI QR코드

DOI QR Code

Study on Noise Performance Enhancement of Tunable Low Noise Amplifier Using CMOS Active Inductor

CMOS 능동 인덕터를 이용한 동조가능 저잡음 증폭기의 잡음성능 향상에 관한 연구

  • 성영규 (고려대학교 대학원 전자정보공학과) ;
  • 윤경식 (고려대학교 전자및정보공학과)
  • Received : 2011.02.07
  • Accepted : 2011.02.24
  • Published : 2011.04.30

Abstract

In this paper, a novel circuit topology of a low-noise amplifier tunable at 1.8GHz band for PCS and 2.4GHz band for WLAN using a CMOS active inductor is proposed. This circuit topology to reduce higher noise figure of the low noise amplifier with the CMOS active load is analyzed. Furthermore, the noise canceling technique is adopted to reduce more the noise figure. The noise figure of the proposed circuit topology is analyzed and simulated in $0.18{\mu}m$ CMOS process technology. Thus, the simulation results exhibit that the noise performance enhancement of the tunable low noise amplifier is about 3.4dB, which is mainly due to the proposed new circuit topology.

본 논문에서는 CMOS 능동 인덕터를 이용하여 1.8GHz PCS 대역과 2.4GHz WLAN 대역에서 동조가 가능한 저잡음 증폭기의 새로운 회로구조를 제안하였다. CMOS 능동 인덕터 부하를 이용하는 저잡음 증폭기의 높은 잡음지수를 줄이기 위한 회로구조와 잡음지수를 더욱 감소시키기 위한 잡음상쇄기법을 적용하고 해석하였다. 이 동조가능 저잡음 증폭기를 $0.18{\mu}m$ CMOS 공정기술로 시뮬레이션을 수행한 결과는 잡음성능이 약 3.4dB 향상된 것을 보여주며, 이는 주로 제안된 새로운 회로구조에 기인한다.

Keywords

References

  1. S. Wu and B. Razavi, "A 900MHz/1.8GHz CMOS receiver for dual-band applications", IEEE International Solid-State Circuits, Vol. 33, pp. 2178- 2185, 1998. https://doi.org/10.1109/4.735702
  2. Chong-Ru Wu and Liang-Hung Lu, "A 2.9-3.5-GHz tunable low-noise amplifier", IEEE Silicon Monolithic Integrated Circuits in RF Systems, pp. 206-209, 2006.
  3. Y.Taur and T.H.Ning, Fundamentals of Modern VLSI Devices, Cambridge, U.K.: Cambridge Univ. Press, 1998.
  4. A. Thanachayanont, and A. Payne, "VHF CMOS integrated active inductor," Electronics Letters, Vol. 32, No. 11, pp. 999-1000, May, 1996. https://doi.org/10.1049/el:19960669
  5. Chao-Chin Hsiao et al., "Improved Quality-Factor of 0.18-${\mu} m$ CMOS Active Inductor by a Feedback Resistance Design," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 12, pp. 467-469, Dec. 2002. https://doi.org/10.1109/LMWC.2002.805931
  6. F. Bruccoleri, E.A.M. Klumperink, and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE J. Solid-State Circuits, Vol. 39, No. 2, pp. 275-282, Feb. 2004. https://doi.org/10.1109/JSSC.2003.821786
  7. 성영규, 석사학위논문, 고려대학교 2009.
  8. B. Razavi, RF Microelectronics, Prentice Hall, 1998.
  9. C.-F. Liao, and S.-I. Liu, "A Broadband Noise-Canceling CMOS LNA for 3.1-10.6-GHz UWB Receivers," IEEE J. Solid-State Circuits, Vol. 42, No. 2, pp. 329-339, Feb. 2007. https://doi.org/10.1109/JSSC.2006.889356
  10. A. Thanachayanont, and A. Payne, "A 3-V RF CMOS Bandpass Amplifier Using An Active Inductor," IEEE International Symposium on Circuits and Systems, Vol. 1, pp. 440-443, 1998.
  11. Yuyu Chang, J. Choma, Jr., and J. Wills, "A 900 MHz active CMOS LNA with a bandpass filter," Mixed-Signal Design, SSMSD'99, pp. 33-36, 1999.
  12. Jhy-Neng Yang, Yi-Chang Cheng, Terng-Yin Hsu, Terng-Ren Hsu, and Chen-Yi Lee, "A 1.75 GHz inductor-less CMOS low noise amplifier with high-Q active inductor load," Circuits and Systems, MWSCAS, Vol. 2, pp. 816-819, 2001.
  13. Jhy-Neng Yang, Yi-Chang Cheng, and Chen-Yi Lee, "A design of CMOS broadband amplifier with high-Q active inductor," Proc. 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, pp. 86-89, Jul. 2003.
  14. M-J. Wu, P-J. Yen, C-C. Chou, and J-T Yang, "A radio frequency CMOS band pass amplifier using high-Q active inductor loads with binary code for multi-band selecting," Proc. 6th WSEAS Int. Conf. on Instrumentation, Measurement, Circuit and System, pp. 138-143, Apr. 2007.