DOI QR코드

DOI QR Code

An Investigation of Treatment Effects of Limestone and Steel Refining Slag for Stabilization of Arsenic and Heavy Metal in the Farmland Soils nearby Abandoned Metal Mine

폐금속 광산 주변 비소 및 중금속 오염농경지의 안정화 처리를 위한 석회석과 제강슬래그의 처리효과 검토

  • Yun, Sung-Wook (Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kang, Sin-Il (Graduate school, Gyeongsang National University) ;
  • Jin, Hae-Geun (Graduate school, Gyeongsang National University) ;
  • Kim, Ha-Jin (Graduate school, Gyeongsang National University) ;
  • Lim, Young-Cheol (Mine Reclamation Corporation) ;
  • Yi, Ji-Min (Mine Reclamation Corporation) ;
  • Yu, Chan (Department of Agricultural Engineering, Gyeongsang National University (Institute of Agriculture & Life Science))
  • 윤성욱 (경상대학교 농업생명과학연구원) ;
  • 강신일 (경상대학교 대학원) ;
  • 진혜근 (경상대학교 대학원) ;
  • 김하진 (경상대학교 대학원) ;
  • 임영철 (한국광해관리공단) ;
  • 이지민 (한국광해관리공단) ;
  • 유찬 (경상대학교 지역환경기반공학과 (농업생명과학연구원))
  • Received : 2011.09.08
  • Accepted : 2011.10.14
  • Published : 2011.10.31

Abstract

A soil stabilization method is an effective and practical remediation alternative for arsenic (As) and heavy metal contaminated farmland soils nearby abandoned metal mine in Korea. This method is a technique whereby amendments are incorporated and mixed with a contaminated soil. Toxic metal bind to the amendments, which reduce their mobility in soil, so the successful stabilization of multi-element contaminated soil depends on the combination of critical elements in the soil and the type of amendments. The objective of this study is to investigate the treatment effects and applicability of limestone (LS) and steel refining slag (SRS) as the amendment for farmland soil contaminated with As and heavy metals, and a lab-column test was conducted for achieving this purpose. The result showed that soil treated with LS and SRS maintained pH buffer capacity and, as a result, the heavy metal leaching concentration was quite low below the water quality standard compared to untreated soil which leachate exceeding the water quality standard was observed, however, the arsenic concentration rather increased with increasing mixture ratio of SRS. This was believed to be related to phosphorus (P) contained in SRS, and dominancy in the competitive adsorption relation between As and P binding strongly to iron might be different according to soil characteristic. We suggested that LS is a effective amendment for reducing heavy metals in soil, and SRS should be used after investigating its applicability based on the adsorption selectivity of arsenic and phosphorus in selected soil.

본 연구에서는 안정화공법을 이용하여 폐금속 광산 주변 비소 및 중금속 성분이 복합적으로 오염된 농경지를 효과적으로 복원하기 위해 안정화제로써 석회석과 제강슬래그의 처리효과와 적용성을 실내컬럼실험을 통해서 검토하였다. 대상토양 내 중금속의 존재형태 중 이동성이 높은 형태인 교환성 및 탄산염 형태의 분포비율은 여러 문헌들의 결과들과 유사하게 카드뮴 > 아연 > 납 순으로 높게 분포하는 것으로 나타나 광해로 인한 농경지의 오염성분들 중 카드뮴은 주변 환경에 미치는 영향이 가장 크며 상당한 주위가 필요한 성분인 것으로 판단되었다. 본 대상토양과 같이 pH가 매우 높은 토양도 갑작스럽게 변화하는 산성환경에 의해 일시적으로 토양의 pH 완충력이 감소하여 다량의 중금속 성분들이 용출될 가능성이 높은 것으로 나타났다. 반면 석회석과 제강슬래그로 처리한 처리구는 수질기준을 초과한 침출수 가 관찰되었던 대조구에 비해 모두 수질기준 이하로 중금속의 농도가 매우 낮게 나타났다. 비소의 경우는 비소 저감의 목적으로 적용한 제강슬래그의 혼합비가 증가할수록 오히려 농도가 증가하는 것으로 나타났다. 이는 제강슬래그가 함유하고 있는 인 성분과 관계가 있는 것으로 판단되었으며, 비소와인의 경쟁적인 흡착 관계에서 그 우세함이 토양의 특성에 따라 상이할 수 있을 것으로 예상되었다. 석회석은 카드뮴, 납 그리고 아연 등의 중금속 성분에 대해서 모두 좋은 처리효과를 나타내어 토양의 중금속 처리에 있어서 효과적인 안정화제로 판단되었다. 제강슬래그의 경우는 비소를 효과적으로 저감하는 물질인 철 산화물을 많이 함유하고 있기 때문에 비소 처리에 있어서 활용 가능성이 높은 재료로 판단되나 복원 대상토양 내에서 철 산화물과 서로 강하게 흡착하려고 하는 비소와 인의 흡착선호도를 먼저 평가한 후에 적용여부를 검토해야 하며, 이와 관련된 연구가 필요할 것으로 판단되었다.

Keywords

References

  1. Basta, N.T. and S.L. McGowen. 2004. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ. Pollut. 127:73-82. https://doi.org/10.1016/S0269-7491(03)00250-1
  2. Bolan, N.S., D.C. Adriano, and D. Curtin. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy 8:215-272.
  3. Cao, X., L.Q. Ma, and A. Shiralipour. 2003. Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator, Pteris vittata L. Environ. Pollut. 126:157-167. https://doi.org/10.1016/S0269-7491(03)00208-2
  4. Carlson, L., J.M. Bigham, U. Schwertmann, A. Kyek, and F. Wagner. 2002. Scavenging of As form acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ. Sci. Technol. 36:1712-1719. https://doi.org/10.1021/es0110271
  5. Chi, H.K. 2005. A study on removal efficiency of heavy metals and possibility of soildification/stabilization in mine tailings by column test. Master Thesis. Semyung University, Korea.
  6. Chung, I.J. 2001. Immobilization of heavy-metals in the tailing of closed metal mining site. Ph.D. Thesis. Sogang University, Korea.
  7. Hartley, W., R. Edwards, and N.W. Lepp. 2004. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short-and long-term leaching tests. Environ. Pollut. 131:495-504. https://doi.org/10.1016/j.envpol.2004.02.017
  8. Huh, H.W. and M.K. Huh. 1998. The effect of simulated acid rain on the growth of important crops. J. Korean Environ. Sci. Soc. 7:123-131.
  9. Hwang, E.H. 2000. A study on the heavy metal contamination of paddy soil in the vicinity of the Seosung Pb-Zn mine. Master Thesis. Korea National University of Education, Korea.
  10. Janos, P., J. Vavrova, L. Herzogova, and V. Pilarova. 2010. Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma 159:335-341. https://doi.org/10.1016/j.geoderma.2010.08.009
  11. Jeon, J.W., B.H. Bae, and Y.H. Kim. 2010. Applicability test of various stabilizers for heavy metals contaminated soil from smelter area. Korean Geo-Environmental Society 11:63-75.
  12. Jun, K.S. and S.E. Oh. 2002. Chemical fixation of heavy metal in contaminated soil from abandoned mine land. KSCE. Journal of Civil Engineering 22:67-80.
  13. Jung, B.G., J.W. Choi, E.S. Yun, J.H. Yoon, and Y.H. Kim. 2001. Monitoring on chemical properties of bench marked upland soils in Korea. Korean J. Soil Sci. Fert. 34:326-332.
  14. Kaasalainen, M. and M. Yli-Halla. 2003. Use of sequential extraction to assess metal partitioning in soils. Environ. Pollut. 126:225-233. https://doi.org/10.1016/S0269-7491(03)00191-X
  15. Kim, S.S. 2005. Heavy metal pollution characteristics and the remediation around abandoned mines in the Nakdong river basin. Ph. D. Thesis. Yeungnam University, Korea.
  16. Kim, T.H. 2010. Efficiency of chemical remediation technology and stabilization mechanism in heavy metal contaminated soil. Master Thesis. Kangwon National University, Korea.
  17. Kumpiene, J., A. Lagerkvist, and C. Maurice. 2008. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review. Waste Management 28:215-225. https://doi.org/10.1016/j.wasman.2006.12.012
  18. Kuo, S. and A.S. Baker. 1980. Sorption of copper, zinc and cadmium by some acid soils. Soil Sci. Soc. Am. J. 44:969-974. https://doi.org/10.2136/sssaj1980.03615995004400050019x
  19. Lee, E.G. 2007. A study on the in-situ stabilization of heavy metals contaminated soils around the abandoned mine area. Master Thesis. Kwangwoon University, Korea.
  20. Lee, J.W. 2007. Study on the management of abandoned metal mines after restoration. Master Thesis. Kwangwoon University, Korea.
  21. Lee, M.H. and J.H. Jeon. 2010. Study for stabilization of arsenic in the farmland soil by using steel making slag and limestone. Econ. Eviron. Geol. 43:305-314.
  22. Lee, S.H., E.Y. Kim, H. Park, J.H. Yun, and J.G. Kim. 2011. In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma 161:1-7. https://doi.org/10.1016/j.geoderma.2010.11.008
  23. Lee, T.M., H.Y. Lai, and Z.S. Chen. 2004. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57:1459-1471. https://doi.org/10.1016/j.chemosphere.2004.08.094
  24. Lim, J.E., K.R. Kim, S.S. Lee, O.K. Kwon, J.E. Yang, and Y.S. Ok. 2010. Stabilization of As (arsenic (V) or roxarsone) contaminated soils using zerovalent iron and basic oxygen furnace slag. Journal of Korean society of environmental engineers 32:631-638.
  25. McLean, J.E. and B.E. Bledsoe. 1992. Behavior of metals in soils, ground water issue. EPA/540/S-92/018. U.S. EPA.
  26. Ministry of Environment. 2007. Annual report of ambient air quality in Korea, 2006 Ministry of Environment, Korea.
  27. Ministry of Environment. 2009a. Standard methods of soil sampling and analysis. Ministry of Environment, Korea.
  28. Ministry of Environment. 2009b. Standard methods of water sampling and analysis. Ministry of Environment, Korea.
  29. Ministry of Environment. 2010a. Soil Environment Conservation Act, Korea.
  30. Ministry of Environment. 2010b. Water Quality Conservation Act, Korea.
  31. Narwal, R.P., B.R. Singh, and B. Salbu. 1999. Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil Sci. Plant Anal. 30:1209-1230. https://doi.org/10.1080/00103629909370279
  32. NIAST. 2000. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, RDA, Suwon, Korea.
  33. Park, D.H., Y.C. Cho, and S.I. Choi. 2010. The laboratory column examination of stabilization for agricultural land contaminated by heavy metals using sequential stabilization. Soil & Groundwater Env. 15:39-45.
  34. Pueyo, M., J. Sastre, E. Hernandez, M. Vidal, J.F. Lopez-Sanchez, and G. Rauret. 2003. Prediction of trace element mobility in contaminated soils by sequential extraction. J. Environ. Qual. 32:2054-2066. https://doi.org/10.2134/jeq2003.2054
  35. Ramos, L., L.M. Hernandez, and M.J. Gonzalez. 1994. Sequential fraction of copper, lead, cadmium and zinc in soils from near Donana National Park. J. Environ. Qual. 23:50-57.
  36. Son, J.H. and H. Roh., S.Y. Lee, S.K. Kim, G.H. Kim, J.K. Park, J.K. Yang, and Y.Y. Chang. 2009. Stabilization of heavy metal contaminated paddy soils near abandoned mine with steel slag and Cao. J. Soil & Groundwater Env. 14:78-86.
  37. Tu, S. and L.Q. Ma. 2003. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environmental and Experimental Botany 50:243-251. https://doi.org/10.1016/S0098-8472(03)00040-6
  38. Ullrich, S.M., M.H. Ramsey, and E. Helios-Rybicka. 2003. Total and exchangeable of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in upper Silesia, Poland. Applied Geochemistry 14:187-196.
  39. Ure, A.M., P.H. Quevauviller, H. Muntau, and B. Griepink. 1993. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. J. Environ. Anal. Chem. 51:135-145. https://doi.org/10.1080/03067319308027619
  40. Wenzel, W.W., N. Kirchbaumer, T. Prohaska, G. Stingeder, E. Lombi, and D.D. Adriano. 2001. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimca Acta. 436:309-323. https://doi.org/10.1016/S0003-2670(01)00924-2
  41. 한국농촌공사. 2008. 토양오염과 농작물오염의 상관관계 연구 보고서.

Cited by

  1. Solidification and Stabilization of Metal(loid)s-contaminated Soils using Single Binders vol.20, pp.7, 2015, https://doi.org/10.7857/JSGE.2015.20.7.135
  2. Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.064
  3. Partitioning of Heavy Metals between Rice Plant and Limestone-stabilized Paddy Soil Contaminated with Heavy Metals vol.20, pp.4, 2015, https://doi.org/10.7857/JSGE.2015.20.4.090
  4. Remediation of Heavy Metal Polluted Agricultural Field with Spent Mushroom Media vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.066
  5. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  6. Distribution Correlation between Heavy Metals Contaminants and PAHs Concentrations of Soils in the Vicinity of Abandoned Mines vol.33, pp.4, 2014, https://doi.org/10.5338/KJEA.2014.33.4.239
  7. Bioremediation of Heavy Metal Contaminated Mine Wastes using Urease Based Plant Extract vol.20, pp.1, 2015, https://doi.org/10.7857/JSGE.2015.20.1.056
  8. Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.391