DOI QR코드

DOI QR Code

부숙촉진 세균 Bacillus sp. SJ21 균주의 cellulase와 xylanase 활성

Cellulase and Xylanase Activity of Compost-promoting Bacteria Bacillus sp. SJ21

  • 신평균 (국립원예특작과학원 버섯과) ;
  • 조수정 (경남과학기술대학교 제약공학과)
  • Shin, Pyung-Gyun (Division of Mushroom Research, International Institute of Horticultural & Herhal Science, RDA) ;
  • Cho, Soo-Jeong (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 투고 : 2011.08.30
  • 심사 : 2011.09.26
  • 발행 : 2011.10.31

초록

Cellulase와 xylanase 분비능이 우수한 고온성 부숙촉진 세균을 분리하기 위하여 진주 인근지역의 새송이버섯 재배농장으로부터 새송이버섯 수확 후 배지를 수집하였다. 새송이버섯 수확 후 배지로부터 23종의 균주를 분리하였으며 이 중 cellulase와 xylanase을 동시에 분비하는 균주를 최종 선발하여 SJ21으로 명명하였다. Bacillus ID kit와 VITEK 2 system를 이용하여 분리균 SJ21의 생리적 생화학적 특성을 조사한 결과 분리균 SJ21은 B. lincheniformis와 유사한 특징을 나타내었으며 16S rDNA 염기서열 분석결과에서는 B. subtilis와 99%의 상동성을 나타내었다. 이와 같은 결과를 종합하여 분리균 SJ21은 Bacillus sp. SJ21 로 동정되었다. 분리균이 분비하는 cellulase와 xylanase 활성은 분리균이 증식함에 따라 대수증식기 중반부터 급격히 증가하였고 정지기에 진입하면 효소활성이 더 이상증가하지 않는 것으로 나타났으며 xylanase 활성은 대수증식기 초기부터 지속적으로 증가하여 대수증식기 중반에 최대활성을 나타내었다.

In order to isolate thermophilic compost-promoting bacteria with high activity of cellulase and xylanase, spent mushroom substrates with sawdust were collected from mushroom cultivation farm, Jinju, Gyeongnam in Korea. Among of the isolates, one strain, designated SJ21 was selected by agar diffusion method. The strain SJ21 was identified as members of the Bacillus lincheniformis by biochemical characteristics using Bacillus ID kit and VITEK 2 system. Comparative 16S rDNA gene sequence analysis showed that strain SJ21 formed a distinct phylogenetic tree within the genus Bacillus and was most closely related to Bacillus subtilis with 16S rDNA gene sequence similarity of 99%. On the basis of its physiological properties, biochemical characteristics and phylogenetic distinctiveness, strain SJ21 was classified within the genus Bacillus, for which the name Bacillus sp. SJ21 is proposed. The cellulase and xylanase activity of Bacillus sp. SJ21 was slightly increased according to bacterial population from exponential phase to stationary phase in growth curve for Bacillus sp. SJ21.

키워드

참고문헌

  1. Duitman, E.H., L.W. Hamoen, M. Rembold, G. Venema, H. Seitz, W. Saenger, F. Bernhard, R. Reinhardt, M. Schmidt, C. Ullrich, T. Stein, F. Leenders, and J. Vaster. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. U.S.A. 96:13294-13299. https://doi.org/10.1073/pnas.96.23.13294
  2. Han, Y.W. 1987. Microbial utilization of straw. Asv. in Applied Microbiology 23:119-125.
  3. Kim, D.J., H.J. Shin, B.H. Min, and K.H. Yoon. 1995. Isolation of a Thermophilic Bacillus sp. producing the thermostable cellulase-free xylanase, and properties of the enzyme. Kor. J. Appl. Microbial biotechnol. 23 (3):304-310.
  4. Kim, J.Y., S.H. Heo, and J.H. Hong. 2004. Isolation and characterization of an alkaline cellulase produced by alkalophilic Bacillus sp. HSH-810. Kor. J. Appl. Microbial biotechnol. 40(2):139-146.
  5. Kim, T.I., J.D. Han, B.S. Jeon, S.W. Ha, C.B. Yang, and M.K. Kim. 1999. Isolation and characterization of bacillus subtilis CH-10 secreting cellulase from catttle manure. J. Microbial. 35(4):277-282.
  6. Lee, J.H. and S.H. Choi. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16(12):1856-1861.
  7. Miller, G.L., R. Blum, W.E. Glennon, and A.L. Burton. 1960. Measurement of carboxymethyl cellulase activity. Anal. Biochem. 2:127-132.
  8. Nakano, M.M., M.A. Marahiel, and P. Zuber. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 170:5662-5668. https://doi.org/10.1128/jb.170.12.5662-5668.1988
  9. Regine, M.D., M. Ptak, F. Peypoux, and G. Michel. 1985. Pore-forming properties of iturin A: a lipopeptide antibiotic. Biochim. Biophys. Acta. 815:405-409. https://doi.org/10.1016/0005-2736(85)90367-0
  10. Roongsawang, T., T. Kameyama, M. Haruki, and M. Morikawa. 2002. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastain and surfactin. Extremophiles 6:499-506. https://doi.org/10.1007/s00792-002-0287-2
  11. Schallmey, M., A. Singh, and O.P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1-17. https://doi.org/10.1139/w03-076
  12. Seki, T., C.K. Chung, H. Mikami, and Y. Oshima. 1978. Deoxyribonucleic acid homology and taxonomy of the genus Bacillus. Int. J. Syst. Bacteriol. 28:182-189. https://doi.org/10.1099/00207713-28-2-182
  13. Vanittanakam, N. and W. Loeffler. 1986. Fengycin-a novel antifungal lipopeptide antibiotics produced by Bacillus subtilis F29-3. J. Antibio. Tokyo 39:888-901. https://doi.org/10.7164/antibiotics.39.888
  14. Williams, B.C., J.T. McMullan, and S. McCahey. 2001. An initial assessment of spent mushroom compost as apotential energy feedstock. Biores. Technol. 79:227-230. https://doi.org/10.1016/S0960-8524(01)00073-6

피인용 문헌

  1. Isolation and Characterization of Bacillus subtilis CA105 from Spent Mushroom (Pleurotus ostreatus) Substrates vol.13, pp.4, 2015, https://doi.org/10.14480/JM.2015.13.4.305
  2. Condition for Mass Production of Antagonistic Bacterium Burkholderia pyrrocinia CAB08106-4 to Control Garlic White Rot vol.41, pp.1, 2013, https://doi.org/10.4489/KJM.2013.41.1.42
  3. Effects of Adding Compound Microbial Inoculum on Microbial Community Diversity and Enzymatic Activity During Co-Composting vol.35, pp.4, 2018, https://doi.org/10.1089/ees.2016.0423