DOI QR코드

DOI QR Code

원예용 상토 재료 피트모스, 펄라이트, 버미큘라이트의 혼합비율에 따른 물리적 특성 변화

Physical Properties of the Horticultural Substrate According to Mixing Ratio of Peatmoss, Perlite and Vermiculite

  • 김혁수 (서울시립대학교 환경원예학과) ;
  • 김계훈 (서울시립대학교 환경원예학과)
  • Kim, Hyuck-Soo (Department of Environmental Horticulture, The University of Seoul) ;
  • Kim, Kye-Hoon (Department of Environmental Horticulture, The University of Seoul)
  • 투고 : 2011.03.17
  • 심사 : 2011.06.17
  • 발행 : 2011.06.30

초록

원예용 상토 생산 시 자재의 혼합으로 결정되는 상토의 물리적 특성은 화학적 특성과는 달리 식물생육기간동안 변화가 거의 없고, 식물 생육에 직접적인 영향을 미친다. 따라서 자재의 혼합비율 설정은 매우 중요하며, 이에 대한 분석 연구는 지속적으로 이뤄져야 한다. 하지만 우리나라의 상토 분석법과 국제적으로 표준화되어 있는 분석법간의 차이로 인해 외국의 분석결과와 국내의 분석결과를 비교 해석하는데 어려움이 있다. 따라서 본 연구에서는 EN 분석법과 RDA 분석법에 따라 피트모스, 펄라이트, 버미큘라이트의 혼합비율에 따른 물리적 특성 변화를 관찰하고, 분석법 간의 차이점을 조사하였다. 연구결과, 각각의 분석법에 따른 상토의 물리적 특성에 차이가 있었으며, 이는 상토 분석 시 전처리 과정의 차이에 의한 것으로 보인다. 또한 원예용 상토 자재로 널리 사용 중인 펄라이트는 내부 공극은 많으나 겉이 막혀있는 특성 때문에 농촌진흥청 상토 분석법에 제시된 입자밀도 항목 중 기존 Pycnometer를 응용한 입자밀도의 측정으로 분석할 경우 EN 분석법과 다른 경향의 결과를 나타냈다. 식물 생육에 적합한 물리성인 공극률 85% 이상, 기상 20-30% 등과 비교 시 EN 분석법으로 분석한 결과에서 피트모스가 혼합된 상토 중 8:2:0과 6:4:0 (peatmoss:perlite: vermiculite)의 상토가 적정기준을 만족하였고, RDA 분석법으로 분석한 결과에서는 6:2:2로 혼합된 상토가 적정기준을 만족하였다. 하지만 RDA 분석법에 제시된 전처리 과정 중 건조처리의 영향으로 인해 EAW와 WBC의 기준까지 만족하는 상토는 없었으며, 분석 방법 전처리 과정에 대한 수정이 필요할 것으로 판단된다. 본 연구에서 제시한 결과를 바탕으로 상토 자재 혼합에 따른 물리적 특성 변화를 삼각도에 응용하게 되면 향후 상토 물리성 연구 및 분석 방법 간의 관계 연구에 많은 도움을 줄 것으로 생각한다.

The physical properties of horticultural substrate are important for optimal plant growth. The physical properties should be properly maintained during the crop growing season for producing higher yield. This experiment was carried out to evaluate the physical properties of different mixtures from various raw materials as horticultural substrates. The mixtures at the different ratios of peatmoss, perlite and vermiculite subjected to 10:0:0, 8:2:0, 6:4:0, 4:6:0, 2:8:0, 0:8:2, 0:10:0, 0:6:4, 0:4:6, 0:2:8, 8:0:2, 0:0:10, 6:0:4, 4:0:6, 2:0:8, 2:6:2, 2:4:4, 4:2:4, 4:4:2, 6:2:2 and 2:2:6 were prepared and analyzed according to two methods of the European Standardization (EN) and Rural Development Administration (RDA). The optimum range of physical properties of a specific horticultural substrate can be predicted using physical-property-triangle. This triangle can also be used to convert a physical property from the EN method to that from the RDA method. Results showed that the mixture at a ratio of > 60% peatmoss, in most cases, is in the range of optimum physical condition for plant growth. We conclude that the developed physical-property-triangle can be suitable to suggest the optimum ratios of horticultural substrates used in this study.

키워드

참고문헌

  1. Bunt, A.C. 1974. Some physical and chemical characteristics of loamless pot-plant substrates and their relation to plant growth. Acta Hort. 37:1954-1965.
  2. Bunt, A.C. 1984. Physical properties of mixtures of peats and minerals of different particle size and bulk density for potting substrates. Acta Hort. 150:143-153.
  3. Bunt, A.C. 1988. Media and mixes for container-grown plants. Unwin Haymen LTD, UK.
  4. Cattivello, C. 1991. Physical parameters in commercial substrates and their relationship. Acta Hort. 294:183-195.
  5. CEN (European committee for standardization). 1999a. Soil improvers and growing media-Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density. EN 13040.
  6. CEN (European committee for standardization). 1999b. Soil improvers and growing media-Determination of organic matter and ash. EN 13039.
  7. CEN (European committee for standardization). 1999c. Soil improvers and growing media-Determination of physical properties-Dry bulk density, air volume, water volume, shrinkage value and total pore space. EN 13041.
  8. De Boodt, M. and O. Verdonck. 1972. The physical properties of the substrates in horticulture. Acta Hort. 26:37-44.
  9. Fernandes C. and J.E. Cora. 2004. Bulk density and relationship air/water of horticultural substrate. Sci. agric. 61(4):446-450.
  10. Gruda, N. and W. H. Schnitzler. 2004a. Suitability of wood fiber substrate for production of vegetable transplants, I. Physical properties of wood fiber substrates. Sci. Hort. 100:309-322. https://doi.org/10.1016/j.scienta.2003.10.001
  11. Gruda, N. and W. H. Schnitzler. 2004b. Suitability of wood fiber substrate for production of vegetable transplants, II. The effect of wood fiber substrates and their volume weights on the growth of tomato transplants. Sci. Hort. 100:333-340. https://doi.org/10.1016/j.scienta.2003.09.004
  12. Heiskanen, J. 1995. Physical properties of two-component growth media based on Sphagnum peat and their implications for plant-available water aeration. Plant and Soil 172:45-54. https://doi.org/10.1007/BF00020858
  13. Kim, K.H. and J.Y. Kang. 2001. Introduction to European Standard methods for physical and chemical analysis of horticultural substrates. Kor. J. Hort. Sci. Technol. 19(2): 179-185.
  14. Kim L.Y. 2006. Measure of quality management on Korean bedsoil. Korean Study Group of Artificial Substrates. 1:1-6.
  15. Kim L.Y. and H.K. Cho. 2002. Development of standard analysis methods for physical properties on Korean bedsoil 1. Particle density and bulk density. Korean J. Soil Sci. Fert. 35(6):327-334.
  16. Kim L.Y., K.H. Jung, and H.M. Ro. 2002. Development of standard analysis methods for physical properties on Korean bedsoil 2. Water content, water retention, saturated hydraulic conductivity. Korean J. Soil Sci. Fert. 35(6):335-343.
  17. Kim L.Y., Y.C. Ku, W.H. Yang, and Y. Nam. 2008. Bed soil and raising seeding. Hakyesa. Daejeon, Korea.
  18. Kipp, J.A., G. Wever, and C. de Kreij. 2000. International substrate manual. Elsevier. doetinchem, Netherlands.
  19. Klougart, A. 1983. Substrates and nutrient flow. Acta Hort. 150:297-313.
  20. Lee, H.H., S.K. Ha, and K.H. Kim. 2007. Optimum condition of the coir-based substrate for growth of red pepper (Capsicum annuum L.) plug seedlings. Korean J. Soil Sci. Fert. 40(5):369-376.
  21. Lee, H.H., S.K. Ha, B.H. Kim, Y.J. Seol, and K.H. Kim. 2006a. Optimum physical condition of peatmoss-based substrate for growth of chinese cabbage (Brassica campestris L. ssp.) plug seedlings. Korean J. Hort. Sci. Technol. 24(3):322-329.
  22. Lee, H.H., S.K. Ha, K.H. Kim, and J.Y. Kang. 2006b. Comparison of the European Standard methods and the Rural Development Administration methods for determining physical properties of horticultural substrates. Korean J. Soil Sci. Fert. 39(2):116-122.
  23. Lee J.W. 2006. Use-cases of Domestic Horticultural Substrate Products and Improvement Programs. Korean Study Group of Artificial Substrates. 1:211-224.
  24. Nkongolo, N.V. and J. Caron. 2006. Pore space organization and plant response in peat substrates: I. Prunus x and Spiraea japonica. Scientific Research and Essay. 1(3): 77-89.cistena
  25. Papadopoulos A.P., A. Bar-Tal, A. Silber, U.K. Saha, and M. Raviv. 2008. Inorganic and synthetic organic components of soilless culture and potting mixes. p. 505-544. In Raviv, M. and Lieth, J.H. (ed.) Soilless Culture: Theory and Practice. Elsevier Science, Amsterdam, Netherlands.
  26. RDA. 2002. Standard analysis of substrate. Suwon. Korea.
  27. Sahin, U., Anapali, O. and S. Ercisli. 2002. Physico-chemical and physical properties of some substrates used in horticulture. Gartenbauwissenschaft 67(2):55-60.
  28. Verdonck, O., R. Penninck, and M. De Boodt. 1984. The physical properties of different horticultural substrates. Acta Hort. 150:155-159.
  29. Verdonck, O. and P. Demeyer. 2004. The influence of the particle sizes on the physical properties of growing media. Acta Hort. 644:99-101.
  30. Verdonck, O. and R. Gabriels. 1988. Substrate requirements for plants. Acta Hort. 221:19-23.

피인용 문헌

  1. A Comparative Study on Carbon Storage and Physicochemical Properties of Vegetation Soil for Extensive Green Rooftop Used in Korea vol.18, pp.1, 2015, https://doi.org/10.13087/kosert.2015.18.1.115
  2. Comparison of Heavy Metal Adsorption by Peat Moss and Peat Moss-Derived Biochar Produced Under Different Carbonization Conditions vol.226, pp.2, 2015, https://doi.org/10.1007/s11270-014-2275-4
  3. Effect of Shading Degree and Rooting Media on Growth of Cuttings in Caragana sinica (Buc’hoz) Rehder and Sedum middendorffianum Maxim vol.23, pp.4, 2015, https://doi.org/10.7783/KJMCS.2015.23.4.271
  4. Physicochemical Properties and Growth Characteristics of Wood Chip and Peat Moss Based Vegetation Media vol.44, pp.3, 2016, https://doi.org/10.5658/WOOD.2016.44.3.323
  5. Immobilization of Lead from Pb-Contaminated Soil Amended with Peat Moss vol.2013, 2013, https://doi.org/10.1155/2013/509520
  6. Changes of Saturated Hydraulic Conductivity of Bed-soils Mixed with Organic and Inorganic Materials vol.47, pp.1, 2014, https://doi.org/10.7745/KJSSF.2014.47.1.066
  7. Influence of different organic geo-sorbents on Spinacia oleracea grown in chromite mine-degraded soil: a greenhouse study pp.1614-7480, 2019, https://doi.org/10.1007/s11368-019-02260-3
  8. Optimal conditions for spore germination and gametophyte and sporophyte production in the autumn fern Dryopteris erythrosora vol.60, pp.1, 2019, https://doi.org/10.1007/s13580-018-0097-9