References
- Antoun, H. and J. Kloepper. 2001. Plant growth promoting rhizobacteria (PGPR). p. 1477-1480. In S. Brenner and J. Miller (ed.) Encyclopedia of Genetics. Academic Press.
- ATSDR. 2005. CERCLA Priority List of Hazardous Substances. http://www.atsdr.cdc. gov/cercla/05list.html
- Atlas, R.M. and J. Philip. 2005. Bioremediation: Applied microbial solutions for real-world environmental cleanup. ASM Press, Washington, D.C., USA.
- Baker, A.J. 1981. Accumulators and excluders strategies in the response of plants to heavy metals. J. Plant Nutr. 3:643-654. https://doi.org/10.1080/01904168109362867
- Barka E.A, J. Nowak, and C. Clément. 2006. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 72:7246-52. https://doi.org/10.1128/AEM.01047-06
- Bech, J., C. Poschenrieder, M. Llugany, J. Barcelo, P. Tume, F.J. Tobias, J.L. Barranzuela, and E.R. Vasquez. 1997. Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Sci. Total Environ. 203:83-91. https://doi.org/10.1016/S0048-9697(97)00136-8
- Bhattacharya, P., A.B. Mukherjee, and G. Jacks. 2002. Metal contamination at a wood preservation site: characterization and experimental studies on remediation. Sci. Total Environ. 290:168-180.
- Bhumbla, D.K. and R.F Keefer. 1994. Arsenic mobilization and bioavailability in soils. p. 51-82. In J.O. Nriagu (ed.) Arsenic in the environment. Part I. Cycling and characterization. John Willey & Sons, Inc., New York, USA.
- Butcher, D.J. 2009. Phytoremediation of arsenic: Fundamental studies, practical applications, and future prospects. Appl. Spectrosc. Rev. 44:534-551. https://doi.org/10.1080/05704920903126727
- Cai, Y. and L.Q. Ma. 2003. Metal tolerance, accumulation and detoxification in plants with emphasis on arsenic in terrestrial plants. p. 95-114. In Y. Cai and O. Braids (ed.) Biochemistry of environmentally important trace elements. Oxford University Press, London, UK.
- Cavalca, L., A. Corsini, S. Bachate, and V. Andreoni. 2010. Role of PGP arsenic-resistant bacteria in As mobilization and translocation in Helianthus annuus L. In Proceedings of the 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.
- Cavalca, L., R. Zanchi, A. Corsini, M. Colombo, C. Romagnoli, E. Canzi, and V. Andreoni. 2010. Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst. Appl. Microbiol. 33:154-164. https://doi.org/10.1016/j.syapm.2010.02.004
- Chopra, B.K., S. Bhat, I.P Mikheenko, Z. Hu, Y. Yang, X. Luo, H. Chen, L. van Zwieten, R. McC. Lilley, and R. Zhang. 2007. The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci. Total Environ. 378:331-342. https://doi.org/10.1016/j.scitotenv.2007.02.036
- Compant S., B. Reiter, A. Sessitsch, J. Nowak, C. Clement, and E.A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by a plant growth-promoting bacterium, Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71:1685-93. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
- De Koe, T. 1994. Arsenic resistance in submediterranean Agrostis species. PhD Thesis, Vrije Universiteit, Amsterdam, The Netherlands.
- Dhankher, O.P., Y. Li, B.P. Rosen, J. Shi, D. Salt, J. Senecoff, N.A. Shasti, and R.B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nature Biotechnol. 20:1140-1145. https://doi.org/10.1038/nbt747
- Dimpka, C.O., A. Svatos, P. Dabrowska, A. Schmidt, W. Boland, and E. Kothe. 2008. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19-25. https://doi.org/10.1016/j.chemosphere.2008.09.079
- Fitz, W.J. and W.W. Wenzel. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99:259-278. https://doi.org/10.1016/S0168-1656(02)00218-3
- Francesconi, K., P. Visoottiviseth, and W. Sridokchan. 2002. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284:27-35. https://doi.org/10.1016/S0048-9697(01)00854-3
- Gerhardt, K.E., B.M. Greenberg, and B.R. Glick. 2006. The role of ACC deaminase in facilitating the phytoremediation of organics, metals and salt. Current Trends in Microbiology 2:61-73.
- Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28:367-374. https://doi.org/10.1016/j.biotechadv.2010.02.001
- Jonnalagadda, S.B. and G. Nenzou. 1997. Studies on arsenic rich mine dumps: II. The element uptake by vegetation. J. Environ. Sci. Health, Part A. 32:455-64.
- Kavamura, V.N. and E. Esposito. 2010. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 28:61-69. https://doi.org/10.1016/j.biotechadv.2009.09.002
- Kidd, P., J. Barcelo, M.P. Bernal, F. Navari-Izzo, C. Poschenrieder, S. Shilev, R. Clemente, and C. Monterroso. 2009. Trace element behaviour at the root-soil interface: Implications in phytoremediation. Environ. Exp. Bot. 67:243-259. https://doi.org/10.1016/j.envexpbot.2009.06.013
- Kim, J.J. 1989. Soil Pollution. p. 169-214. In K. Han et al. (ed.). Agricultural Environmental Chemistry, Dong-Hwa Technol. Pub. Co. Seoul, Korea.
- Kim, B.Y. 1993. Soil Pollution and Improvement Countermeasure. In Soil Management for Sustainable Agric. Kor. Soc. Soil Fert., Suwon, Korea. p. 68-98.
- King, D.J. A.I Doronila, C. Feenstra, A.J.M Baker, and I.E Woodrow. 2008. Phytostabilization of arsenical gold mine tailings using for Eucalyptus species: Growth, arsenic uptake and availability after five years. Sci. Total Environ. 406:35-42. https://doi.org/10.1016/j.scitotenv.2008.07.054
- Luo, C.L., Z.G. Shen, and X.D. Li. 2008. Plant uptake and leaching of metals during the hot EDDS-enhanced phytoextraction process. Int. J. Phytorem. 9:181-196.
- Ma, L.Q., K.M. Komar, C. Tu, W.H. Zhang, Y. Cai, and E.D. Kennelly. 2001. A fern that hyperaccumulates. Nature 409:579. https://doi.org/10.1038/35054664
- Ma, Y., M.N.V. Prasad, M. Rajkumar, and H. Freitas. 2011. Plant growth promoting rhizobacteria and endophyte accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29:248-258. https://doi.org/10.1016/j.biotechadv.2010.12.001
- Mandal, B.K. and K.T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235. https://doi.org/10.1016/S0039-9140(02)00268-0
- Mandal, S.M., B. Pati, R. Das, K. Amit, and K. A. Ghosh. 2008. Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from root nodules of Vigna mungo (L.) Hepper grown in arsenic-contaminated field. J. Gen. Appl. Microbiol. 54:93-99. https://doi.org/10.2323/jgam.54.93
- Meagher, R.B. and A.C. Heaton. 2005. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J. Ind. Microbiol. Biotechnol. 32:502-13. https://doi.org/10.1007/s10295-005-0255-9
- Meharg, A.A. and J. Hartley-Whitaker. 2002. Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol. 154:29-43. https://doi.org/10.1046/j.1469-8137.2002.00363.x
- Merkle, S. 2005. Engineering forest trees with heavy metal resistance genes for phytoremediation. p. 117-120. In Agricultural Biotechnology: Beyond Food and Energy to Health and Environment. National Agricultural Biotechnology Council, New York, USA.
- Nie, L., S. Shah, A. Rashid, G.I. Burd, D.G. Dixon, and B. Glick. 2002. Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol. Biochem. 40:355-361. https://doi.org/10.1016/S0981-9428(02)01375-X
- Nordstrom, D.K. 2002. Worldwide occurrences of arsenic in ground water. Science 296:2143-2145. https://doi.org/10.1126/science.1072375
- Nriagu, J.O. and J.M Pacyna. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134-139. https://doi.org/10.1038/333134a0
- Nriagu, J.O. 1989. A global assessment of natural sources of atmospheric trace metals. Nature (London) 338:47-49. https://doi.org/10.1038/338047a0
- Nriagu, J.O. 2002. Arsenic poisoning through the ages. p. 1-50. In W.T. Frankenberger (ed.) Environmental chemistry of arsenic. Marcel Dekker, New York, USA.
- Nriagu, J.O., P. Bhattacharya, A.B. Mukherjee, J. Bundschuh, R. Zevenhoven, and R.H. Loppert. 2007. Arsenic in soil and groundwater: an overview. p. 3-60. In P. Bhattacharya et al. (ed.) Arsenic in soil and groundwater environment. Trace Metals and Other Contaminants in the Environment, Vol. 9. Elsevier, New York, USA.
- O'Neill, P. 1995. Arsenic. p. 105-121. In B.J. Alloway (ed.) Heavy metals in soils. Blackie Academic and Professional, London, UK
- Pacyna, J.M. and E.G. Pacyna. 2001. An assessment of global and regional emissions of trace metals in the atmosphere from anthropogenic sources world. Environ. Rev. 9:269-298. https://doi.org/10.1139/a01-012
- Panda, S.K., R.K. Upadhyay, and S. Nath. 2010. Arsenic stress in plants. J. Agron. Crop Sci. 196:161-174 https://doi.org/10.1111/j.1439-037X.2009.00407.x
- Pierzynski, G.M., J.T. Sims, and G.F. Vance. 2005. Soils and environmental quality. CRC Press, Boca Raton, FL, USA.
- Pillay, V.K. and J. Nowak. 1997. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can. J. Microbiol. 43:354-61. https://doi.org/10.1139/m97-049
- Porter, E.K. and P.J. Peterson. 1975. Arsenic accumulation by plants on mine waste (United Kingdom). Sci. Total Environ. 4:365-371. https://doi.org/10.1016/0048-9697(75)90028-5
- Pulford, I.D. and C. Watson. 2003. Phytoremediation of heavy metal-contaminated land by trees - A review. Environ. Int. 29:529-540. https://doi.org/10.1016/S0160-4120(02)00152-6
- Rajkumar, M., M.N. Vara Prasad, H. Freitas, and N. Ae. 2009. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit. Rev. Biotechnol. 29:120-130. https://doi.org/10.1080/07388550902913772
- Rajkumar, M., N. Ae, M.N. Vara Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal extraction. Trends Biotechnol. 28:142-149. https://doi.org/10.1016/j.tibtech.2009.12.002
- Reed, M. and B. Glick. 2005. Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria in either copper and polyaromatic hydrocarbons. Can. J. Microbiol. 51:1061-1069. https://doi.org/10.1139/w05-094
- Reichman, S.M. 2007. The potential of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol. Biochem. 39:2587-2593. https://doi.org/10.1016/j.soilbio.2007.04.030
- Rutherford, D.W., A.J. Bednar, J.R. Garbarino, R. Needham, K.W. Staver, and R.L. Wershaw. 2003. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environ. Sci. Technol. 37:1515-1520. https://doi.org/10.1021/es026222+
- Ryan R.P., K. Germaine, A. Franks, D.J. Ryan, and D.N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
- Safronova, V., V. Stepanok, G. Engqvist, Y. Alekseyev, and A. Belimov. 2006. Root associated bacteria containing 1- aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils. 42:267-272. https://doi.org/10.1007/s00374-005-0024-y
- Saleem, M., M. Arshad, S. Hussain, and A. Bhatti. 2007. Perspective on plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. 34:635-648. https://doi.org/10.1007/s10295-007-0240-6
- Salt, D.E., M. Blaylock, N.P.B.A. Kumar, V. Duschenkov, B.D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13:468-474. https://doi.org/10.1038/nbt0595-468
- Schulz, B. and C. Boyle. 2006. What are endophytes? p. 1-13. In Schulz B. et al. (ed.) Microbial Root Endophytes. Springer-Verlag, Berlin.
- Sinha, S. and S.K. Mukherjee. 2008. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56:55-60. https://doi.org/10.1007/s00284-007-9038-z
- Sizova, O.I., V.V. Kochetkov, and A.M. Boronin. 2006. The arsenic-phytoremediation potential of genetically modified Pseudomonas spp. In J.L. Morel et al. (ed.) Phytoremediation of metal-contaminated soils. Vol. 68. NATO Series. Springer, The Netherlands.
- Smith, S.E., H.M. Christophersen, S. Pope, and F.A. Smith. 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1-21. https://doi.org/10.1007/s11104-009-0089-8
- Treeby, M., H. Marschner, and V. Romheld. 1989. Mobilization of iron and other micronutrient cations from a calcareous soil by plant borne, microbial and synthetic chelators. Plant Soil 114:217-22. https://doi.org/10.1007/BF02220801
- US EPA. 1999. Phytoremediation resource guide. US Environmental Protection Agency. Washington DC, USA.
- Vazquez, S., R. Agha, A. Granado, M.J. Sarro, E. Esteban, J.M. Penalosa, and R.O. Carpena. 2006. Use of white lupine plant for stabilization of Cd and As polluted acid soil. Water Air Soil Pollut. 177:349-365. https://doi.org/10.1007/s11270-006-9178-y
- Wang, S. and X. Zhao. 2009. On the potential of biological treatment for arsenic contaminated soils and groundwater. J. Environ. Manage. 90:2367-2376. https://doi.org/10.1016/j.jenvman.2009.02.001
- Wenzel, W.W., D.C. Adriano, D. Salt, and R. Smith. 1999. Phytoremediation: a plant-microbe-based remediation system. p. 457-508. In D.C. Adriano et al. (ed.) Agronomy Monograph 37, Madison, WI, USA.
- Xiong, J., L. Wu, S. Tu, J.D. Van Nostrand, Z. He, J. Zhou, and G. Wang. 2010. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L. Appl. Environ. Microbiol. 76:7277-7284. https://doi.org/10.1128/AEM.00500-10
- Yang, J.E., Y.K. Kim, J.H. Kim, and Y.H. Park. 1999. Environmental impacts and management strategies of trace metals in soil and groundwater in The Republic of Korea. p. 270-289. In P.M. Huang and I.K. Iskandar (ed.) Soils and groundwater pollution and remediation Asia, Africa, and Oceania. CRC Press, New York, USA.
- Zhao, F.J., S.J. Dunham, and S.P. McGrath. 2002. Arsenic hyperaccumulation by different fern species. New Phytol. 156:27-31. https://doi.org/10.1046/j.1469-8137.2002.00493.x
- Zhuang, X., J. Chen, H. Shim, and Z. Bai. 2007. New advances in plant growth promoting rhizobacteria for bioremediation. Environ. Int. 33:406-413. https://doi.org/10.1016/j.envint.2006.12.005
Cited by
- Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach 2017, https://doi.org/10.1007/s11356-017-0029-8