DOI QR코드

DOI QR Code

Promoted Growth of Maize by the Phosphate Solubilizing Bacteria Isolated from North-east China

  • Wu, Hai-Yan (College of Resources and Environment, Jilin Agricultural University) ;
  • Wang, Li-Chun (Agricultural Environment and Resources Research Center, Jilin Academy of agricultural Sciences) ;
  • Gao, Xing-Ai (Institute of Rural Energy, Jilin Academy of agricultural Sciences) ;
  • Jin, Rong-De (Agricultural Environment and Resources Research Center, Jilin Academy of agricultural Sciences) ;
  • Fan, Zuo-Wei (Agricultural Environment and Resources Research Center, Jilin Academy of agricultural Sciences) ;
  • Kim, Kil-Yong (Agricultural Environment and Resources Research Center, Jilin Academy of agricultural Sciences) ;
  • Zhao, Lan-Po (College of Resources and Environment, Jilin Agricultural University)
  • Received : 2011.01.12
  • Accepted : 2011.02.18
  • Published : 2011.02.28

Abstract

A strain of phosphate solubilizing bacterium was isolated from rhizosphere and identified as Burkholderia sp. by 16S-rRNA gene sequence analyses. The bacterium was found to release gluconic acid and the solubilization of hydroxyapatite in the liquid medium by a significant drop in pH to 3.7 from an initial pH 7.0. The soluble-P concentration continuously increased during the incubation periods and the total amount of soluble P released in culture filtrate was detected at 990 mg $L^{-1}$ after 10 days of inoculation. Most promoted maize growth was found in the standard NPK (240-120-120 kg $ha^{-1}$) soil inoculation with Burkholderia sp. (Twenty milliliters/plant, 106 CFU) and also in the absence of Burkholderia sp. inoculation, the soil amended with only 2/3 levels of P gave significant higher plant yield compared to 1/3 levels of P or without P supplementation.

Keywords

References

  1. Antoun, H., C.J. Beauchamp, N. Goussard, R. Chabot, and R. Lalande. 1998. Potential of Rhizobium and Bradyrhizobium species as growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Pla. Soil 204:57-67. https://doi.org/10.1023/A:1004326910584
  2. Chabot, R., H. Antoun, and M.P. Cescas. 1993. Stimulation de la croissance du mais et de la laitue romaine par desmicroorganismes dissolvant le phosphore inorganique. Can. J. Microbiol. 39:941-947. https://doi.org/10.1139/m93-142
  3. Chabot, R., C.J. Beauchamp, J.W. Kloepper, and H. Antoun. 1998. Effect of phosphorus on root colonization and growth promotion of maize by bioluminiscent mutants of phosphatesolubilizing Rhizobium leguminosarum biovar phaseoli. Soi. Biolo. Biochem. 30:1615-1618. https://doi.org/10.1016/S0038-0717(98)00054-6
  4. Di Cello, F., A. Bevivino, L.Chiarini, R. Fani, D. Paffetti, S. Tabacchioni, and C. Dalmastri. 1997. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizoshere at different plant growth stages. Appl. Environ. Microb. 63:4485-4493.
  5. Goldstein, A.H. 1986. Bacterial mineral phosphate solubilization: Historical perspective and future prospects. Am. J. Altern. Agric. 1:57-65.
  6. Goldstein, A.H. 1995. Recent progress in understanding the molecular-genetics and biochemistry of calcium-phosphate solubilization by gram-negative bacteria. Biol. Agric. Hortic. 12:185-193. https://doi.org/10.1080/01448765.1995.9754736
  7. Goldstein, A.H., K. Braverman, and N. Osorio. 1999. Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) bacterium. FEMS Microbiol. Ecol. 3:295.300.
  8. Halder A.K., A.K. Misra, and P.K. Chakrabarty. 1991. Solubilization of inorganic phosphates by Bradyrhizobium. Indian J. Exp. Biol. 29:28-31
  9. Hilda, R. and F. Reyanldo. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 17:319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  10. Hwangbo, H., R.D. Park, Y.W. Kim, Y.S. Rim, K.H. Park, T.H. Kim, J. S. Suh, and K.Y. Kim. 2003. 2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr. Microbiol. 47:87-92. https://doi.org/10.1007/s00284-002-3951-y
  11. Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soi Biologi Biochemistry 24:389-395. https://doi.org/10.1016/0038-0717(92)90199-8
  12. Illmer, P., A. Barbato, and F. Schinner. 1995. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem. 27:265-270. https://doi.org/10.1016/0038-0717(94)00205-F
  13. Kim K.Y., G.A. McDonald, and D. Jordan. 1997. Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol. Fert. Soils. 24:347-352 https://doi.org/10.1007/s003740050256
  14. Leyval, C. and J. Bertherin. 1989. Interactions between Laccaria laccata, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg and Fe mobilization from minerals and plant growth. Pla. Soil 117:103-110. https://doi.org/10.1007/BF02206262
  15. Lifshitz, R., J.W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E.M. Tipping, and I. Zalesca. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Psedomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390-395. https://doi.org/10.1139/m87-068
  16. Louw, H.A. and D.M. Webley. 1959. The bacteriology of the root region of the oat plant grown under controlled pot culture conditions. J. Appl. Microbiol. 22:216-226. https://doi.org/10.1111/j.1365-2672.1959.tb00154.x
  17. Moghimi, A., M.E. Tate, and I.M. Oades. 1978. Characterization of rhizosphere products. especially 2-ketogluconic acid. Soil. Biol. Biochem. 10:77-281. https://doi.org/10.1016/0038-0717(78)90014-7
  18. Park, B.K., H. Hwangbo, I.J. Lee, K.Y. Kim, and K.Y. Kim. 2005. Effect of phosphate bio-fertilizer produced by Enterobacter intermedium on rhizosphere soil properties and lettuce growth. Korean J. Soil Sci. Fert. 38:15-24.
  19. Rajan, S.S.S., J.H. Watkinson, and A. G. Sinclair. 1996. Phosphate rocks for direct application to soil. Adv. Agron. 57:77-159. https://doi.org/10.1016/S0065-2113(08)60923-2
  20. Reddy, M.S., S. Kumar, K. Babita, and M.S. Reddy. 2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technol. 84:187-189. https://doi.org/10.1016/S0960-8524(02)00040-8
  21. Richardson, A.E. 1994. Soil microorganisms and phosphorus availability. In: Pankhurst CE,
  22. Doube B.M., V.V.S.R. Grupta, and P.R. Grace, editors. Soil Biota, Management in Sustainable Farming Systems. Melbourne, Australia: CSIRO, 50-62.
  23. Rodriguez, H., I. Goire, and M. Rodriguez. 1996. Caracterizacion de cepas de Pseudomonas solubilizadoras de fosforo. Rev ICIDCA 30, 47-54.
  24. Scheffer, F. and P. Schachtschabel. 1989. Lehrbuch der Bodenkunde. In: Enke Verlag (Eds.), Stuttgart, Germany, pp. 491
  25. Shigaki, F., A.N. Sharpley, and L.I. Prochnow. 2006. Animalbased agriculture, phosphorus and management and water quality in Brazil: options for the future. Sci. Agr. 63:194-209. https://doi.org/10.1590/S0103-90162006000200013
  26. Song, Y.C., X.L. Li, and P. Christie. 2002. Uptake of organic phosphorus by arbuscular mycorrhizal red clover. Pedosphere 12:103-110.