DOI QR코드

DOI QR Code

Influence of different strains of Agrobacterium rhizogenes on hairy root induction and growth in Scutellaria baicalensis

Agrobacterium rhizogenes strains이 황금 모상근 유도와 생육에 미치는 영향

  • Park, Woo-Tae (Department of Crop Science, Chungnam National University) ;
  • Kim, Young-Seon (Department of Crop Science, Chungnam National University) ;
  • Park, Nam-Il (Department of Crop Science, Chungnam National University) ;
  • Kim, Haeng-Hoon (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration (RDA)) ;
  • Lee, Sook-Young (Chosum University Dental Hospital) ;
  • Park, Sang-Un (Department of Crop Science, Chungnam National University)
  • 박우태 (충남대학교 응용식물학과) ;
  • 김영선 (충남대학교 응용식물학과) ;
  • 박남일 (충남대학교 응용식물학과) ;
  • 김행훈 (농촌진흥청 국립농업과학원 농업유전자원센터) ;
  • 이숙영 (조선대학교 치과병원 의료기기 임상시험센터) ;
  • 박상언 (충남대학교 응용식물학과)
  • Received : 2011.03.17
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

Agrobacterium rhizogenes, a gram-negative soil bacterium, is one of the most widely studied among them. A, rhizogenes can transfer T-DNA, excised from Ri (root inducing)-plasmids from the bacterial to the plant cell. It is the causal agent of 'hairy root' diseases in plants, and has been used for the production of hairy root cultures from a multitude of species. Five different strains of Agrobacterium rhizogenes differed in their ability to induce Scutellaria baicalensis hairy roots and also showed varying effects on the growth in hairy root cultures. A. rhizogenes R 1000 is the most effective strain for the induction (57.3%) and growth (11.9 g $L^{-1}$) in hairy root of Scutellaria baicalensis. Our results demonstrate that use of suitable strains of A. rhizogenes may allow study of the regulation of flavone biosynthesis in hairy root cultures of Scutellaria baicalensis.

Keywords

References

  1. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JM, Roa-Rodriguez C, Jefferson RA. 2005. Gene transfer to plants by diverse species of bacteria. Nature 433: 629-633. https://doi.org/10.1038/nature03309
  2. Chi YS, Cheon BS, Kim HP. 2001. Effect of wogonin, a plant flavone from Scutellaria radix, on the suppression of cyclooxygenase-2 and the induction of inducible nitric oxide synthase in lipopolysaccharide-treated RAW 264.7 cells. Biochem. Pharmacol. 61: 1195-1203. https://doi.org/10.1016/S0006-2952(01)00597-4
  3. Chung H, Jung YM, Shin DH, Lee JY, Oh MY, Kim HJ, Jang KS, Jeon SJ, Son KH, Kong G. 2008. Anticancer effects of wogonin in both estrogen receptor-positive and -negative human breast cancer cell lines in vitro and in nude mice xenografts. Int. J. Cancer 122: 816-822. https://doi.org/10.1002/ijc.23182
  4. Giri A, Narasu MJ. 2000. Transgenic hairy roots: recent trends and applications. Biotechnology Advances 18: 1-22.
  5. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. 2006. Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol. 24: 403-409. https://doi.org/10.1016/j.tibtech.2006.07.002
  6. Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ. 1987. New routes to plant secondary products. Biotechnology 5: 800-804. https://doi.org/10.1038/nbt0887-800
  7. Huang Y, Tsang SY, Yao X, Chen ZY. 2005. Biological properties of baicalein in cardiovascular system. Curr. Drug Targets Cardiovasc Haematol Disord. 5: 177-184. https://doi.org/10.2174/1568006043586206
  8. Ionkova I, Kartnig T, Alfermann W. 1997. Cycloartane saponin production in hairy root cultures of Astragalus mongholicus. Phytochemistry 45: 1597-1600. https://doi.org/10.1016/S0031-9422(97)00247-1
  9. Kovacs G, Kuzovkina IN, Szoke E, Kursinszki L. 2004. HPLC determination of flavonoids in hairy-root cultures of Scutellaria baicalensis Georgi. Chromatographia 60: S81-85.
  10. Kuzovkina IN, Guseva AV, Alterman IE, Karnachuk RA. 2001. Flavonoid production in transformed Scutellaria baicalensis roots and ways of its regulation. Russ J Plant Physiol. 48: 448-452. https://doi.org/10.1023/A:1016739010716
  11. Kuzovkina IN, Guseva AV, Kovacs D, Szoke E, Vdovitchenko MY. 2005. Flavones in genetically transformed Scutellaria baicalensis roots and induction of their synthesis by elicitation with methyl jasmonate. Russ J. Plant Physiol. 52: 77-82. https://doi.org/10.1007/s11183-005-0012-y
  12. Lee DH, Kim C, Zhang L, Lee YJ. 2008. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem. Pharmacol. 75: 2020-2033. https://doi.org/10.1016/j.bcp.2008.02.023
  13. Lee H, Kim YO, Kim H, Kim SY, Noh HS, Kang SS, Cho GJ, Choi WS, Suk K. 2003. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J. 17: 1943-1944.
  14. Li H, Murch S, Saxena P. 2000. Thidiazuron-induced de novo shoot organogenesis on seedlings, etiolated hypocotyls and stem segments of Huang-qin. Plant Cell, Tissue and Organ Culture 62: 169-173. https://doi.org/10.1023/A:1006491408762
  15. Liu S, Zhang J, Li D, Liu W, Luo X, Zhang R, Li L, Zhao J. 2007. Anticancer activity and quantitative analysis of flavone of Cirsium japonicum DC. Nat Prod Res: Formerly Nat. Prod. Lett. 21: 915-922.
  16. Li-Weber M. 2009. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 35: 57-68. https://doi.org/10.1016/j.ctrv.2008.09.005
  17. Lu N, Gao Y, Ling Y, Chen Y, Yang Y, Gu HY, Qi Q, Liu W, Wang XT, You QD, Guo QL. 2008. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sci. 82: 956-963. https://doi.org/10.1016/j.lfs.2008.02.013
  18. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  19. Nicoll SM, Brigham LA, Wen FS, Hawes MC. 1995. Expression of transferred genes during hairy root development in pea. Plant Cell Tissue Organ Cult. 42: 57-66. https://doi.org/10.1007/BF00037682
  20. Nishikawa K, Furukawa H, Fujioka T, Fujii H, Mihashi K, Shimomura K, Ishimaru K. 1999. Flavone production in transformed root cultures of Scutellaria baicalensis Georgi. Phytochemistry 52: 885-890. https://doi.org/10.1016/S0031-9422(99)00306-4
  21. Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK. 2009. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med. 75: 41-48. https://doi.org/10.1055/s-0028-1088364
  22. Shieh DE, Liu LT, Lin CC. 2000. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res. 20: 2861-2865.
  23. Signs M, Flores H. 1990. The biosynthetic potential of plant roots. Bioessays. 12: 7-13. https://doi.org/10.1002/bies.950120103
  24. Srivastava S, Srivastava AK. 2007. Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology 27: 29-43. https://doi.org/10.1080/07388550601173918
  25. Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC. 2007. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep. 26: 199-210. https://doi.org/10.1007/s00299-006-0236-0
  26. Wang W, Guo QL, You QD, Zhang K, Yang Y, Yu J, Liu W, Zhao L, Gu HY, Hu Y, Tan Z, Wang XT. 2006. The anticancer activities of wogonin in murine sarcoma S180 both in vitro and in vivo. Biol. Pharm. Bull. 29: 1132-1137. https://doi.org/10.1248/bpb.29.1132
  27. Zehra M, Banerjee S, Sharma S, Kumar S. 1999. Influence of Agrobacterium rhizogenes strains on biomass and alkaloid productivity in hairy root lines of Hyoscyamus muticus and H. albus. Planta Med. 65: 60-63. https://doi.org/10.1055/s-1999-13964