DOI QR코드

DOI QR Code

Characterization of BLV env gene in Korean Holstein dairy cattle

한국형 홀스타인종 젖소의 BLV env 유전자의 특성분석

  • Jeong, Hang-Jin (Department of Animal Biosystem Science, Chungnam National University) ;
  • Yu, Seong-Lan (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Lee, Jun-Heon (Department of Animal Science and Biotechnology, Chungnam National University) ;
  • Do, Chang-Hee (Department of Animal Biosystem Science, Chungnam National University) ;
  • Suh, Guk-Hyun (College of Veterinary Medicine, Cheunnam National University) ;
  • Ryoo, Seung-Heui (Government of Changcheongnam-Do, Livestock Research Institute) ;
  • Chung, Sang-Il (College of Veterinary Medicine, Chungnam National University) ;
  • Sang, Byung-Chan (Department of Animal Biosystem Science, Chungnam National University)
  • 정행진 (충남대학교 동물바이오시스템과학과) ;
  • 유성란 (충남대학교 동물자원생명과학과) ;
  • 이준헌 (충남대학교 동물자원생명과학과) ;
  • 도창희 (충남대학교 동물바이오시스템과학과) ;
  • 서국현 (전남대학교 수의과대학) ;
  • 류승희 (충남 축산기술연구소) ;
  • 정상일 (충남대학교 수의과대학) ;
  • 상병찬 (충남대학교 동물바이오시스템과학과)
  • Received : 2011.05.16
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

This study was performed to investigate the characterization of infectious BLV env gene isolated form Korean Holstein Cattle and to determine its incoming origin. Gp51 region of BLV env gene known as having important role in immunological function was characterized using PCR-RFLP sequencing and phylogenetic analysis. BLV env gene was grouped into PCR-RFLP patterns with three restriction endonucleases including Pvu II, BamHI and Hae III, and we identified two new RFLP patterns from nucleotide sequences of each group. Phylogenetic analysis showed that 80% of the Korean Holstein was included in the USA and Japanese group. These results here can provide a valuable information about the character of the BLV env gene and research on infection route of BLV.

Keywords

References

  1. Asfaw Y, Tsuduku S, Konishi M, Murakami K. Tsuboi T, Wu D, Sentsui H. 2005. Distribution and superinfection of bovine leukemia virus genotypes in Japan. Arch. Virol. 150: 493- 505. https://doi.org/10.1007/s00705-004-0433-5
  2. Beier D. Blankenstein P, Marquardt O, Kuzmak J. 2001. Identification of different BLV provirus isolates by PCR, RFLPA and DNA sequencing. Berl. Munchierarztl. Wochenschr. 114: 252-256.
  3. Camargos, MF, Stancek D, Rocha MA, Lessa, LM, Reis, JK, Leite RC. 2002. Partial sequencing of env gene of bovine leukaemia virus from Brazilian samples and phylogenetic analysis. J. Vet. Med. B. Infect. Dis. Vet. Public Health. 49: 325-331. https://doi.org/10.1046/j.1439-0450.2002.00582.x
  4. Da Y, Shanks RD, Stewart JA, Lewin HA. 1993. Milk and fat yields decline in bovine leukemia virus-infected Holstein cattle with persistent lymphocytosis. Proc. Natl. Acad. Sci. U. S. A. 90: 6538-6541. https://doi.org/10.1073/pnas.90.14.6538
  5. Fechner H, Kurg A, Geue L, Blankenstein P, Mewes G, Ebner D, Beier D. 1996. Evaluation of polymerase chain reaction (PCR) application in diagnosis of bovine leukaemia virus (BLV) infection in naturally infected cattle. J. Vet. Med. B. 43: 621-630. https://doi.org/10.1111/j.1439-0450.1996.tb00361.x
  6. Fechner H, Blankenstein P, Looman AC, Elwert J, Geue L, Albrecht C, Kurg A, Beier D, Marquardt O, Ebner D. 1997. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology. 237: 261-269. https://doi.org/10.1006/viro.1997.8784
  7. Hemmtzadeh F. 2007. Sequencing and phylogenetic analysis of gp51 gene of bovine leukemia virus in Iranian isolates. Vet. Res. Commun. 31: 783-789. https://doi.org/10.1007/s11259-007-0012-9
  8. Licursi M, Inoshima Y, Wu D, Yokoyama T, Gonz lez ET, Sentsui H. 2002. Genetic heterogeneity among bovine leukemia virus genotypes and its relation to humoral responses in hosts. Virus Res. 86: 101-110. https://doi.org/10.1016/S0168-1702(02)00059-X
  9. Licursi M, Inoshima, Y, Wu D, Yokoyama T, Gonz lez ET, Sentsui H. 2003. Provirus variants of bovine leukemia virus in naturally infected cattle from Argentina and Japan. Vet. Microbiol. 96: 17-23. https://doi.org/10.1016/S0378-1135(03)00202-5
  10. Mirsky ML, Olmstead C, Da Y, Lewin HA. 1998. Reduced bovine leukaemia virus proviral load in leuktically resistant cattle. Anim Genet. 29: 245-252. https://doi.org/10.1046/j.1365-2052.1998.00320.x
  11. Monti G, Schrijver R, Beier D. 2005. Genetic diversity and spread of Bovine leukaemia virus isolates in Argentine dairy cattle. Arch. Virol. 150: 443-458. https://doi.org/10.1007/s00705-004-0437-1
  12. Sagata N, Yasunaga T, Tsuzuku-Kawamura J, Ohishi K, Ogawa Y, Ikawa Y. 1985. Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. USA. 82: 677-681. https://doi.org/10.1073/pnas.82.3.677
  13. Shu GH. 2004. Establishment of a bovine leukemia virus-free dairy herd. Ph. D. dissertation, Cheunnam National Univ., Cheunnam, Korea. [in Korean]
  14. Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  15. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  16. Xu A, van Eijk MJ, Park C, Lewin HA. 1993. Polymorphism in BoLA-DRB3 exon 2 correlates with resistance to persistent lymphocytosis caused by bovine leukemia virus. J. Immunol. 151: 6977-6985.