DOI QR코드

DOI QR Code

Supplementation of Either Conjugated Linoleic Acid or γ-linolenic Acid with or without Carnitine to Pig Diet Affect Flavor of Pork and Neutrophil Phagocytosis

  • Lee, Jun-Yeob (College of Animal Life Sciences, Kangwon National University) ;
  • Cha, Keun-Hwan (Korea Feed Ingredients Association) ;
  • Chae, Byong-Jo (College of Animal Life Sciences, Kangwon National University) ;
  • Ohh, Sang-Jip (College of Animal Life Sciences, Kangwon National University)
  • Received : 2011.05.26
  • Accepted : 2011.06.16
  • Published : 2011.06.30

Abstract

In this study, four different oils containing either CLA, GLA, GLA+Carnitine or corn oil (control) were supplemented to finishing pigs (average 70.8 kg initial BW) diet for 28 d of feeding period. To evaluate the values of the dietary fatty acids, especially in view of sensory and nutritional characteristics of pork; pig performances, carcass characteristics, serum cholesterol, neutrophil phagocytosis, TBARS, electronic nose flavor and fatty acids profile of pork were measured. There were no differences in daily gain and nutrients digestion among treatments, but daily feed intake of CLA enriched diet was lower (P<0.05) than that of other diets. There were no differences in backfat thickness, dressing percentage and carcass grade among pigs fed diets supplemented with different oils. Serum total cholesterol showed a tendency to be lowered in pigs fed GLA enriched diet. TBARS values during storage of pork were higher in belly from pigs fed control diet whereas the values of belly from pigs fed GLA+Carnitine diet were lower than others. However, difference in TBARS was not remarkable in adipose tissue and 4 weeks extended storage regardless of pork parts. Proportion of saturated fatty acids such as C16:0 and C18:0 were higher (P<0.05) in pork loin and thin skirt from pigs fed CLA enriched diet compared to those from other diets. There were no differences in fatty acids profiles of belly and adipose tissue. CLA accumulation in pork was increased by the dietary CLA supplementation and this could be also confirmed by a slight de novo synthesis of CLA in pork from pigs fed CLA free diets. GLA was selectively accumulated to pork adipose tissue and loin from pigs fed GLA enriched diets. There was no accumulation of GLA when GLA was not supplemented, indicating no de novo synthesis of GLA. Phagocytic activity was the highest (p<0.05) in neutrophil of pigs fed GLA+Carnitine supplemented diet, then, followed by pigs fed GLA supplemented diet. There was no difference in phagocytosis between control and CLA treatment although the phagocytosis was numerically lowest in pig fed CLA enriched diet. There were distinct differences in electronic nose flavor pattern among treatments regardless of the parts. This study showed that dietary supplementation of functional fatty acids like CLA or GLA was able to result in characteristic differences in feed intake, TBARS, fatty acids profile and flavor of pork, serum cholesterol regulation and neutrophil phagocytosis.

Keywords

References

  1. A. O. A. C. 1990. Official Methods of Analysis (15th ed.). Association of Official Analytical Chemists. Washington, D.C.
  2. Apple, J., Sawyer, J. T., Maxwell, C. V., Yancey, J. W. S., Frank, J. W., Woodworth, J. C. and Musser, R. E. 2011. Effects of l-carnitine supplementation on quality characteristics of fresh pork bellies from pigs fed three levels of corn oil. J. Anim. Sci. on line. doi:10.2527/jas.2011-3933.
  3. Bee, G. 2001. Dietary conjugated linoleic acids affect tissue lipid composition but not de novo lipogenesis in finishing pigs. Anim. Res. 50:383-399. https://doi.org/10.1051/animres:2001114
  4. Bertol, T. M., Ellis, M., Hamilton, D. N., Johnson, E. W. and Ritter, M. J. 2005. Effects of dietary supplementation with L-carnitine and fat on blood acid-base responses to handling in slaughter weight pigs. J. Anim. Sci. 83:75-81. https://doi.org/10.2527/2005.83175x
  5. Bontempo, V., Sciannimanico, D., Pastorelli, G., Rossi, R., Rosi, F. and Corino, C. 2004. Dietary conjugated linoleic acid positively affects immunologic variables in lactating sows and piglets. J. Nutr. 134:817-824. https://doi.org/10.1093/jn/134.4.817
  6. Cameron, N. and Enser, M. 1991. Fatty acid composition of lipid in longissimus dors imuscle of Duroc and British Landrace pigs and its relationship with eating quality. Meat Science 29:295-307. https://doi.org/10.1016/0309-1740(91)90009-F
  7. Carroll, J. A. and Allee, G. L. 2009. Hormonal control of feed intake in swine. In) Voluntary Feed Intake in Pigs. pp. 155-187 ISBN 978-90-8686-096-8.
  8. Chandak, P., Radovic, B. Aflaki, E., Kolb, D., Buchebner, M., Frohlich, E., Magnes, C., Sinner, F., Haemmerle, G., Zechner, R., Tabas, I., Levak-Frank, S. and Kratky, D. 2010. Efficient phagocytosis requires triacylglycerol hydrolysis by adipose triglyceride lipase. J. Biol. Chem. 285:20192-20201. https://doi.org/10.1074/jbc.M110.107854
  9. Chung, S., Kong, S., Seong, K. and Cho, Y. 2002. $\gamma$-Linolenic acid in borage oil reverses epidermal hyperproliferation in Guinea pigs. J. Nutr. 132: 3090-3097. https://doi.org/10.1093/jn/131.10.3090
  10. Dodson, V., Hausman, G., Guan, L., Du, M., Rasmussen, T., Poulos, S., Mir, P., Bergen, W., Fernyhough, M., McFarland, D., Rhoads, R., Soret, B., Reecy, J., Velleman, S. and Jiang, Z. 2010. Lipid metabolism, adipocyte depot physiology and utilization of meat animals as experimental models for metabolic research. Int. J. Biol. Sci. 6:691-699.
  11. Dugan, M. E. R., Aalhus, J. L. and Kramer, J. K. G. 2004. Conjugated linoleic acid pork research. Am. J. Clin. Nutr. 79 (suppl):1212S-1216S. https://doi.org/10.1093/ajcn/79.6.1212S
  12. Dugan, M. E. R., Aalhus, J. L., Schaefer, A. L. and Kramer, J. K. G. 1997. The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs. Can. J. Anim. Sci. 77:723-725. https://doi.org/10.4141/A97-084
  13. Dugan, M. E. R., Aalhus, J. L., Jeremiah, L. E., Kramer, J. K. G. and Schaefer, A. L. 1999. The effects of feeding conjugated linoleic acid on subsequent pork quality. Can. J. Anim. Sci., 79:45-51. https://doi.org/10.4141/A98-070
  14. Ecker, J., Liebisch, G., Scherer, M. and Schmitz, G. 2010. Differential effects of conjugated linoleic acid isomers on macrophage glycerophospholipid metabolism. J. Lipid Res. 51:2686-2694. https://doi.org/10.1194/jlr.M007906
  15. Eggert, J. M., Belury, M. A., Kempa-Steczko, A., Mills, S. E. and Schinckel, A. P. 2001. Effects of conjugated linoleic acid on the belly firmness and fatty acid composition of genetically lean pigs. J Anim. Sci. 79:2866-2872. https://doi.org/10.2527/2001.79112866x
  16. Ellis, M. and Mckeith, F. 2010. Nutritional influences on pork quality. http://www.extension.org/pages/27434/nutritionalinfluences-on-pork-quality.
  17. Fenton, T. W. and Fenton, M. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci. 59, 631-634. https://doi.org/10.4141/cjas79-081
  18. Folch, J., Lees, M. and Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
  19. Fukushima, M., Ohhashi, T., Ohno, S., Saitoh, H., Sonoyama, K., Shimada, K., Sekikawa, M. and Nakano, M. 2001. Effects of diets enriched in n-6 or n-3 fatty acids on cholesterol metabolism in older rats chronically fed a cholesterol-enriched diet. Lipids. 36:261-266. https://doi.org/10.1007/s11745-001-0716-6
  20. Furuse, M., Okada, R., Kita, K., Asakura, K. and Okumura, J. 1992. Effect of gamma linolenic acid on lipid metabolism of laying hens. Comp. Biochem. Physiol. A 101: 167-169. https://doi.org/10.1016/0300-9629(92)90646-8
  21. Ge, J., Wang, Y., Feng, Y., Liu, H., Cui1, X., Chen, F., Tai1, G. and Liu1, Z. 2009. Direct effects of activin A on the activation of mouse macrophage. Cell. Mol. Immunol. 6: 129-133. https://doi.org/10.1038/cmi.2009.18
  22. Gonzalez, D. 2008. Effect of dietary fatty acids, time of feeding and immune response in poultry. MS thesis, Oregon state Univ. USA.
  23. Greer, W., Boisclair, R., Stankiewicz, M., McAnulty, W., Jay, P., and Sykes, R. 2009. Leptin concentrations and the immunemediated reduction of feed intake in sheep infected with the nematode Trichostrongylus colubriformis. Br. J. Nutr. 102:954-957. https://doi.org/10.1017/S0007114509359115
  24. Hanczakkowski, P., Szymczyk, B. and Hanczakowska, E. 2009. Fatty acid profile and cholesterol content of meat from pigs fed different fats. Ann. Anim. Sci. 9:157-163.
  25. Hansen, L., Mikkelsen, L., Agerhem, H., Laue, A., Jensen, M. and Jensen, B. 2000. Effect of fermented liquid food and zinc bacitracin on microbial metabolism in the gut and sensoric profile of M. longissimus dorsi from entire male and female pigs. Anim. Sci. 71:65-80. https://doi.org/10.1017/S1357729800054904
  26. He, M. L., Ishikawa, S. and Hidari, H. 2005. Fatty acid profiles of various muscles and adipose tissues from fattening horses in comparison with beef cattle and pigs. Asian-Aust. J. Anim. Sci. 18:1655-1661. https://doi.org/10.5713/ajas.2005.1655
  27. Hemat, R. 2004. Principle of Orthomolecularism. Urotext. ISBN 1-903737-06-0.
  28. Hoppel, C. 2003. The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis. 41S:4-12.
  29. Hoque, A., Katoh, K. and Suzuki, K. 2009. Genetic associations of residual feed intake with serum insulin-like growth factor-I and leptin concentrations, meat quality, and carcass cross sectional fat area ratios in Duroc pigs J. Anim. Sci. 87:3069-3075. https://doi.org/10.2527/jas.2008-1268
  30. Izgut-Uysal V. N., Agaç, A., Karadogan, I. and Derin, N. 2004. Peritoneal macrophages function modulation by L-carnitine in aging rats. Aging Clin. Exp. Res.16:337-341. https://doi.org/10.1007/BF03324561
  31. James, B. W. 2009. Effects of dietary L-carnitine on finishing pig growth performance, meat quality and stress parameters during handling. Ph. D. Dissertation. KSU. USA.
  32. Jonsdottir, R., Valdimarsdottir, T., Baldursdottir, B. and Thorkelsson, G. 2003. Influence of low fat fishmeal on fatty acid composition and sensory quality of pork. J. Muscle Foods. 14:51-56. https://doi.org/10.1111/j.1745-4573.2003.tb00345.x
  33. Joo, S. T., Lee, J. I., Ha, Y. L. and Park, G. B. 2002. Effects of dietary conjugated linoleic acid on fatty acid composition, lipid oxidation, color, and water-holding capacity of pork loin. J. Anim. Sci. 80:108-112. https://doi.org/10.2527/2002.801108x
  34. Kang, K. W. and Pariza, M. W. 2001. Trans-10,cis-12-conjugated linoleic acid reduces leptin secretion from 3T3-L1 adipocytes. Biochem. Biophy. Res. Comm. 287:377-382. https://doi.org/10.1006/bbrc.2001.5603
  35. Kew, S., Banerjee, T., Minihane, A. M., Finnegan, Y. E., Williams, C. M. and Calder, P. C. 2003. Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthfree-living subjects aged 25-72 y. Am. J. Clin. Nutr. 77:1278-1286. https://doi.org/10.1093/ajcn/77.5.1278
  36. Latour, M. A., Gerrard, D. E. and Shipp, T. E. 2003. Evaluating growth and carcass characteristics of barrows fed a triglyceride form of conjugated linoleic acid. Purdue Univ. Swine Res. Rep. 2003:68-71.
  37. Lima-Salgado, T. M., Sampaio, S. C., Cury-Boaventura, M. F. and Curi, R. 2011. Modulatory effect of fatty acids on fungicidal activity, respiratory burst and TNF-$\alpha$ and IL-6 production in J774 murine macrophages. Br. J. Nutr. 105:1173-1179. https://doi.org/10.1017/S0007114510004873
  38. Lin, Y., Li, W., Ling, J. and Zhou, L. 2010. Effect of carnitine onserum cholesterol of alcoholic cardiomyopathy dogs. Eur. J. Lipid Sci. Technol. 112:821-827. https://doi.org/10.1002/ejlt.200900247
  39. Liu, B. F., Miyata, S., Kojima, H., Uriuhara, A., Kusunoki, H., Suzuki, K., and Kasuga, M. 1999. Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products. Diabetes. 48:2074-2082. https://doi.org/10.2337/diabetes.48.10.2074
  40. Liu, J. W., DeMichele, S. J., Palombo, J. T., Chuang, L. T., Hastilow, C., Jr. Bobik, E. and Huang, Y. S. 2004. Effect of long-term dietary supplementation of high-gamma-linolenic canola oil versus borage oil on growth, hematology, serum biochemistry, and N-6 fatty acid metabolism in rats. J Agric Food Chem. 52:3960-3966. https://doi.org/10.1021/jf0496651
  41. Lykkesfeldt, J. and Svendsen, O. 2007. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173:502-511. https://doi.org/10.1016/j.tvjl.2006.06.005
  42. McLeod, R., LeBlanc, A., Langille, M., Mitchell, P. and Currie, D. 2004. Conjugated linoleic acids, atherosclerosis, and hepatic very-low-density lipoprotein metabolism. Am. J. Clin. Nutr. 79: 1169S-1174S. https://doi.org/10.1093/ajcn/79.6.1169S
  43. Malaguarnera, M., Vacante, M., Avitabile, T., Malaguarnera, M., Cammalleri, L. and Motta, M. 2009. L-Carnitine supplementation reduces oxidized LDL cholesterol in patients with diabetes. Am. J. Clin. Nutr. 89:71-76. https://doi.org/10.3945/ajcn.2008.26251
  44. Martin, D., Antequera, T., Gonzalez, E., Lopez-Bote, C. and Ruiz, J. 2007. Changes in the fatty cid profile of the subcutaneous fat of swine throughout fattening as affected by dietary conjugated linoleic acid and monounsaturated fatty acids. J. Agric. Food Chem. 55:10820-10826. https://doi.org/10.1021/jf072213e
  45. Maw, S. J., Fowler, V., Hamilton, M. and Petchey, A. 2001. Effect of husbandry and housing of pigs on the organoleptic properties of bacon. Livest. Prod. Sci., 68:119-130. https://doi.org/10.1016/S0301-6226(00)00242-6
  46. Menendez, A., Colomer, R. and Lupu, R. 2005. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of $\gamma$-linolenic acid-induced toxicity to tumor cells: an extensionto Nwankwo's hypothesis, Hypotheses 64:337-341. https://doi.org/10.1016/j.mehy.2004.06.032
  47. Migdal, W., Pasciak, P., Wojtysiak, D., Barowicz, T., Pieszka, M. and Pietras, M. 2004. The effect of dietary CLA supplementation on meat and eating quality, and the histochemical profile of the m. longissimus dorsi from stress susceptible fatteners slaughtered at heavier weights. Meat Sci., 66:863-870. https://doi.org/10.1016/j.meatsci.2003.08.008
  48. Miles, E., Banerjee, T., Dooper, M., M'Rabet, L., Graus, Y. and Calder, P. 2004. The influence of different combinations of gamma-linolenic acid, stearidonic acid and EPA on immune function in healthy young male subjects. Br. J. Nutr. 91:893-903. https://doi.org/10.1079/BJN20041131
  49. Miner, L., Cederbergy, C., Chenz, X., Baile, C. and Nielsenyy, M. 2001. Dietary conjugated linoleic acid (CLA) and body fat changes. Nebraska Swine Report:27-28.
  50. Moon, H. K., Lee, S. D., Jung, H. J., Kim, Y. H., Park, J. C., Ji, S. Y., Kim, C. D., Kwon, O. S. and Kim, I. C.. 2008. Effects of dietary protein level and supplementation of conjugated linoleic acid on growth performance and meat quality parameters in finishing pigs. J. Anim. Sci. Technol. 50:695-704. https://doi.org/10.5187/JAST.2008.50.5.695
  51. Moreno, R., Miller, P., Burkey, T., Jones, S., Cuppett, S., Carr, T., Jones, T. and Diedrichsen, R. 2008. The effect of corn distillers dried grain with solubles (DDGS) on carcass characteristics and pork quality. Nebraska Swine Report. 2008:8-11.
  52. Ngapo, T. and Gariepy, C. 2008. Factors affecting the eating quality of pork. Crit. Rev. Food Sci. Nutr. 48:599-633. https://doi.org/10.1080/10408390701558126
  53. N. R. C. 1998. Nutrients Requirements of Swine. 10th ed. National Academy Science-National Research Council. Washington, D.C.
  54. O'Shea. M., Bassaganya-Riera, J. and Mohede, I. 2004. Immunomodulatory properties of conjugated linoleic acid. Am. J. Clin. Nutr. 79: 1199S-1206S. https://doi.org/10.1093/ajcn/79.6.1199S
  55. Owen, K. Q., Ji, H., Maxwell, C. V., Nelssen, J. L., Goodband, R. D., Tokach, M. D., Tremblay, G. C. and Koo, S. I. 2001. Dietary L-carnitine suppresses mitochondrial branched chain keto acid dehydrogenase activity and enhances protein accretion and carcass characteristics of swine. J. Anim. Sci. 79:3104-3112. https://doi.org/10.2527/2001.79123104x
  56. Palombo, J. D., DeMichele, S. J., Liu, J. W., Bistrian, B. R. and Huang, Y. S. 2000. Comparison of growth and fatty acid metabolism in rats fed diets containing equal levels of gamma-linolenic acid from high gamma-linolenic acid canola oil or borage oil. Lipids. 35:975-981. https://doi.org/10.1007/s11745-000-0608-9
  57. Peiretti, P. and Meineri, G. 2011. Effects of diets with increasing levels of Spirulina platensis on the carcass characteristics, meat quality and fatty acid composition of growing rabbits. Livestock Sci. doi:10.1016/j.livsci.2011.03.31.
  58. Peris, M. and Escuder-Gilabert, L. 2009. A 21st century technique for food control: Electronic nose. Analytica Chimica Acta. 638:1-15. https://doi.org/10.1016/j.aca.2009.02.009
  59. Raff, M., Tholstrup, T., Basu, S., Nonboe, P., Sorensen, M. and Straarup, E. 2008. Diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. J. Nutr. 138:509514. https://doi.org/10.1093/jn/138.3.509
  60. Ramsey, T. G., Evock-Clover, C. M., Steele, N. C. and Azain, M. J. 2001. Dietary conjugated linoleic acid alters fatty acid composition of pig skeletal muscle and fat. J. Anim. Sci. 9:2152-2161.
  61. Riediger, N. D., Othman, R. A., Suh, M. and Moghadasian, M. H. 2009. A systemic review of the roles of n-3 fatty acids in health and disease. J. Am. Diet. Assoc. 109:668-679. https://doi.org/10.1016/j.jada.2008.12.022
  62. Roche, M., Noone, E., Sewter, C., Mc Bennett, S., Savage, D., Gibney, M., O'Rahilly, S. and Vidal-Puig, A. 2002. Isomerependent metabolic effects of conjugated linoleic acid. Diabetes 51:2037-2044. https://doi.org/10.2337/diabetes.51.7.2037
  63. Romans, J. R., Johnson, R. C., Wulf, D. M., Libal, G. W. and Costello, W. J. 1995a. Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics and omega-3 fatty acid content of pork: I. Dietary level of flaxseed. J. Anim. Sci. 73:1982-1986. https://doi.org/10.2527/1995.7371982x
  64. Romans, J. R., Johnson, R. C., Wulf, D. M., Libal, G. W. and Costello, W. J. 1995b. Effects of ground flaxseed in swine dietson pig performance and on physical and sensory characteristics and omega-3 fatty acid content of pork: II. Duration of 15% dietary flaxseed. J. Anim. Sci. 73:1987-1999. https://doi.org/10.2527/1995.7371987x
  65. SAS Institute. 2003. SAS Stat User's Guide. Version 8. SAS Institute Inc., Cary, NC.
  66. Selvaraj, R. and Cherian, G. 2004. Changes in delayed type hypersensitivity, egg antibody content and immune cell fatty acid composition of layer birds fed conjugated linoleic acid, n-6 or n-3 fatty acids. Can. J. Anim. Sci. 84:221-228. https://doi.org/10.4141/A03-058
  67. Sioutis, S., Coates, A., Buckley, J., Murphy, T., Channon, H. and Howe, P. 2008. N-3 enrichment of pork with fish meal: Effects on production and consumer acceptability. Eur. J. Lipid Sci. Technol. 110:701-706. https://doi.org/10.1002/ejlt.200700253
  68. Song, D. H., Kang, J. H., Lee, G. S., Jeung, E. B. and Yang, M. P. 2007. Upregulation of tumor necrosis factor-$\alpha$ expression by trans10-cis12 conjugated linoleic acid enhances phagocytosis of RAW macrophages via a peroxisome proliferator-activated receptor $\gamma$-dependent pathway. Cytokine. 37:227-235. https://doi.org/10.1016/j.cyto.2007.04.003
  69. Stachowska E., Baskiewicz-Masiuk, M., Dziedziejko, V., Adler, G., Bober, J., Machalinski, B. and Chlubek, D. 2007. Conjugated linoleic acids can change phagocytosis of human monocytes/macrophages by reduction in Cox-2 expression. Lipids. 42: 707-716. https://doi.org/10.1007/s11745-007-3072-2
  70. Sukhija, P. S. and Palmquist, D. L. 1988. Rapid method for determination of total fatty acid contents and composition of feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206. https://doi.org/10.1021/jf00084a019
  71. Takada, R. and Saitoh, M. 1998. Effect of dietary gamma-linolenic acid-enriched oil on backfat thickness and liver fatty acid degrading enzyme activity in growing pigs. Anim. Sci. Technol. 69:433-438.
  72. Teye, G., Sheard, P., Whittington, F., Nute, G., Stewart, A. and Wood, J. 2006. Influence of dietary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci. 73:157-165. https://doi.org/10.1016/j.meatsci.2005.11.010
  73. Weaver, K., Ivester, P., Seeds, M., Case, D., Arm, J. and Chilton, F. 2009. Effect of dietary fatty acids on inflammatory gene expression in healthy humans J. Biol. Chem. 284:15400-15407. https://doi.org/10.1074/jbc.M109.004861
  74. White, H. M., Richert, B. T., Radcliffe, J. S., Schinckel, A. P., Burgess, J. R., Koser, S. L., Donkin, S. S. and Latour, M. 2009. Feeding conjugated linoleic acid partially recovers carcass quality in pigs fed dried corn distillers grains with soluble. J. Anim Sci. 87:157-166. https://doi.org/10.2527/jas.2007-0734
  75. Wiegand, B. R., Parrish, F. C., Swan, J. E., Larsen, S. T. and Baas, T. J. 2001. Conjugated linoleic acid improves feed efficiency, decreases subcutaneous fat, and improves certain aspects of meat quality in stress-genotype pigs. J. Anim. Sci. 79:2187-2195. https://doi.org/10.2527/2001.7982187x
  76. Witte, V. C., Krause, G. F. and Bailey, M. E. 1970. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 35: 582585. https://doi.org/10.1111/j.1365-2621.1970.tb04815.x
  77. Xi, L., Brown, K., Woodworth, J., Shim, K., Johnson, B. and Odle, J.2008. Maternal dietary L carnitine supplementation influences fetal carnitine status and stimulates carnitine palmitoyl transferase and pyruvate dehydrogenase complex activities in swine. J. Nutr. 138:2356-2362. https://doi.org/10.3945/jn.108.095638
  78. Yaqoob, P. 2004. Fatty acids and the immune system: from basic science to clinical applications. Proc. Nutr. Soc. 63:89-104. https://doi.org/10.1079/PNS2003328
  79. Yin, J. D., Shang, X. G., Li, D. F., Wang, F. L., Guan, Y. F. and Wang, Z. Y. 2008. Effects of dietary conjugated linoleic acid on the fatty acid profile and cholesterol content of egg yolks from different breeds of layers. Poult. Sci. 87:284-290. https://doi.org/10.3382/ps.2007-00220

Cited by

  1. Physiological concentrations of trans-11 18:1 vaccenic acid suppress pro-inflammatory markers under acute inflammation in isolated ICR mice splenocytes vol.25, pp.1, 2016, https://doi.org/10.1007/s10068-016-0040-8