DOI QR코드

DOI QR Code

Recent Advances in Structural Studies of Antifreeze Proteins

구조 생물학을 이용한 Antifreeze protein의 최근 연구동향

  • 이준혁 (극지연구소 극지생명과학연구부) ;
  • 이성구 (극지연구소 극지생명과학연구부) ;
  • 김학준 (극지연구소 극지생명과학연구부)
  • Received : 2011.01.13
  • Accepted : 2011.04.28
  • Published : 2011.06.30

Abstract

Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Keywords

References

  1. Ajees A, Anantharamaiah GM, Mishra VK, Hussain M, Murthy HM (2006) Crystal structure of human apolipoprotein A-I: insights into its protective effect against cardiovascular diseases. Proc Natl Acad Sci USA 103:2126-2131 https://doi.org/10.1073/pnas.0506877103
  2. Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187-1196 https://doi.org/10.1016/S0031-9422(03)00420-5
  3. D'Amico S, Collins T, Marx J, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385-389 https://doi.org/10.1038/sj.embor.7400662
  4. Davies PL, Sykes BD (1997) Antifreeze proteins. Curr Opin Struct Biol 7:828-834 https://doi.org/10.1016/S0959-440X(97)80154-6
  5. Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Philos Trans Roy Soc B 357:927-935 https://doi.org/10.1098/rstb.2002.1081
  6. DeLano W (2002) The PyMOL Molecular Graphics System, DeLano Scientific LLC, San Carlos, CA. http://www.pymol.org/. Accessed 11 Aug 2010
  7. Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry, J, Davies PL (2008) A $Ca^{2+}-dependent$ bacterial antifreeze protein domain has a novel betahelical ice-binding fold. Biochem J 411:171-180 https://doi.org/10.1042/BJ20071372
  8. Gauthier SY, Scotter AJ, Lin FH, Baardsnes J, Fletcher GL, Davies PL (2008) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57:292-296 https://doi.org/10.1016/j.cryobiol.2008.10.122
  9. Graether SP, Sykes BD (2004) Cold survival in freezeintolerant insects: the structure and function of betahelical antifreeze proteins. Eur J Biochem 271: 3285-3296 https://doi.org/10.1111/j.1432-1033.2004.04256.x
  10. Graether SP, Kuiper MJ, Gagne SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325-328 https://doi.org/10.1038/35018610
  11. Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399-405 https://doi.org/10.1016/j.tplants.2004.06.007
  12. Gronwald W, Loewen MC, Lix B, Daugulis AJ, Sönnichsen FD, Davies PL, Sykes BD (1998) The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry 37:4712-4721 https://doi.org/10.1021/bi972788c
  13. Gwak IG, Jung WS, Kim HJ, Kang SH, Jin E (2010) Antifreeze Protein in Antarctic Marine Diatom, Chaetoceros neogracile. Mar Biotechnol 12:630-639 https://doi.org/10.1007/s10126-009-9250-x
  14. Hamada T, Ito Y, Abe T, Hayashi F, Güntert P, Inoue M, Kigawa T, Terada T, Shirouzu M, Yoshida M, Tanaka A, Sugano S, Yokoyama S, Hirota H (2006) Solution structure of the antifreeze-like domain of human sialic acid synthase. Protein Sci 15:1010-1016 https://doi.org/10.1110/ps.051700406
  15. Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101-106 https://doi.org/10.1016/S0968-0004(01)02028-X
  16. Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285-288 https://doi.org/10.1038/384285a0
  17. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363-371 https://doi.org/10.1038/nprot.2009.2
  18. Lee JK, Park KS, Park S, Park H, Song YH, Kang SH, Kim HJ (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60:222-228 https://doi.org/10.1016/j.cryobiol.2010.01.002
  19. Leinala EK, Davies PL, Jia Z (2002) Crystal structure of beta-helical antifreeze protein points to a general ice binding model. Structure 10:619-627 https://doi.org/10.1016/S0969-2126(02)00745-1
  20. Liou YC, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406:322-324 https://doi.org/10.1038/35018604
  21. Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew CL (2007) Structure and evolutionary origin of Ca(2+)-dependent herring type II antifreeze protein. PLoS One 2:e548. doi: 10.1371/journal.pone.0000548
  22. Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MW, Griffith M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661-5671 https://doi.org/10.1128/JB.186.17.5661-5671.2004
  23. Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008) Crystal structure and mutational analysis of $Ca^{2+}-independent$ type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734-746 https://doi.org/10.1016/j.jmb.2008.07.042
  24. Patel SN, Graether SP (2010) Structures and ice-binding faces of the alanine-rich type I antifreeze proteins. Biochem Cell Biol 88:223-229 https://doi.org/10.1139/O09-183
  25. Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63-70 https://doi.org/10.1006/cryo.2001.2341
  26. Sicheri F, Yang DS (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427-431 https://doi.org/10.1038/375427a0
  27. Sonnichsen FD, DeLuca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetic of the protein-ice interaction. Structure 4:1325-1337 https://doi.org/10.1016/S0969-2126(96)00140-2
  28. Worrall D, Elias L, Ashford D, Smallwood M, Sidebottom C, Lillford P, Telford J, Holt C, Bowles D (1998) A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282:115-117 https://doi.org/10.1126/science.282.5386.115
  29. Xiao N, Suzuki K, Nishimiya Y, Kondo H, Miura A, Tsuda S, Hoshino T (2010) Comparison of functional properties of two fungal antifreeze proteins from Antarctomyces psychrotrophicus and Typhula ishikariensis. FEBS J 277:394-403 https://doi.org/10.1111/j.1742-4658.2009.07490.x
  30. Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci Biotech Biochem 66:239-247 https://doi.org/10.1271/bbb.66.239
  31. Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H (2003) Type II antifreeze protein from a midlatitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem 67:461-466 https://doi.org/10.1271/bbb.67.461
  32. Zhao Z, Deng G, Lui Q, Laursen RA (1998) Cloning and sequencing of cDNA encoding the LS-12 antifreeze protein in the longhorn sculpin, Myoxocephalus octodecimspinosis. Biochim Biophys Acta 1382:177-180 https://doi.org/10.1016/S0167-4838(97)00197-0