DOI QR코드

DOI QR Code

Evaluation of Toxicity and Gene Expression Changes Triggered by Oxide Nanoparticles

  • Dua, Pooja (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Chaudhari, Kiran N. (Department of Advanced Materials Chemistry, BK21 Research Team, Korea University) ;
  • Lee, Chang-Han (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Chaudhari, Nitin K. (Department of Advanced Materials Chemistry, BK21 Research Team, Korea University) ;
  • Hong, Sun-Woo (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University) ;
  • Yu, Jong-Sung (Department of Advanced Materials Chemistry, BK21 Research Team, Korea University) ;
  • Kim, So-Youn (Department of Biomedical Engineering, Dongguk University) ;
  • Lee, Dong-Ki (Global Research Laboratory for RNAi Medicine, Department of Chemistry and BK21 School of Chemical Materials Science, Sungkyunkwan University)
  • Received : 2011.01.10
  • Accepted : 2011.04.25
  • Published : 2011.06.20

Abstract

Several studies have demonstrated that nanoparticles (NPs) have toxic effects on cultured cell lines, yet there are no clear data describing the overall molecular changes induced by NPs currently in use for human applications. In this study, the in vitro cytotoxicity of three oxide NPs of around 100 nm size, namely, mesoporous silica (MCM-41), iron oxide ($Fe_2O_3$-NPs), and zinc oxide (ZnO-NPs), was evaluated in the human embryonic kidney cell line HEK293. Cell viability assays demonstrated that 100 ${\mu}g/mL$ MCM-41, 100 ${\mu}g/mL$ $Fe_2O_3$, and 12.5 ${\mu}g/mL$ ZnO exhibited 20% reductions in HEK293 cell viability in 24 hrs. DNA microarray analysis was performed on cells treated with these oxide NPs and further validated by real time PCR to understand cytotoxic changes occurring at the molecular level. Microarray analysis of NP-treated cells identified a number of up- and down-regulated genes that were found to be associated with inflammation, stress, and the cell death and defense response. At both the cellular and molecular levels, the toxicity was observed in the following order: ZnO-NPs > $Fe_2O_3$-NPs > MCM-41. In conclusion, our study provides important information regarding the toxicity of these three commonly used oxide NPs, which should be useful in future biomedical applications of these nanoparticles.

Keywords

References

  1. Rothen-Rutishauser, B. M.; Schurch, S.; Haenni, B.; Kapp, N.; Gehr, P. Environ. Sci. Technol. 2006, 40, 4353-4359. https://doi.org/10.1021/es0522635
  2. Huang, X.; Teng, X.; Chen, D.; Tang, F.; He, J. Biomaterials 2010, 31, 438-448. https://doi.org/10.1016/j.biomaterials.2009.09.060
  3. Tang, J.; Xiong, L.; Wang, S.; Wang, J.; Liu, L.; Li, J.; Yuan, F.; Xi, T. J. Nanosci. Nanotechnol. 2009, 9, 4924-4932. https://doi.org/10.1166/jnn.2009.1269
  4. Oberdorster, G.; Elder, A.; Rinderknecht, A. J. Nanosci. Nanotechnol. 2009, 9, 4996-5007. https://doi.org/10.1166/jnn.2009.GR02
  5. Long, T. C.; Saleh, N.; Tilton, R. D.; Lowry, G. V.; Veronesi, B. Environ. Sci. Technol. 2006, 40, 4346-4352. https://doi.org/10.1021/es060589n
  6. Ji, L. L.; Chen, Y.; Wang, Z. T. Exp. Toxicol. Pathol. 2008, 60, 87-93. https://doi.org/10.1016/j.etp.2007.11.010
  7. Florea, A. M.; Splettstoesser, F.; Busselberg, D. Toxicol. Appl. Pharmacol. 2007, 220, 292-301. https://doi.org/10.1016/j.taap.2007.01.022
  8. Tao, Z.; Toms, B. B.; Goodisman, J.; Asefa, T. Chem. Res. Toxicol. 2009, 22, 1869-1880. https://doi.org/10.1021/tx900276u
  9. Di Pasqua, A. J.; Sharma, K. K.; Shi, Y. L.; Toms, B. B.; Ouellette, W.; Dabrowiak, J. C.; Asefa, T. J. Inorg. Biochem. 2008, 102, 1416-1423. https://doi.org/10.1016/j.jinorgbio.2007.12.028
  10. Huang, D. M.; Chung, T. H.; Hung, Y.; Lu, F.; Wu, S. H.; Mou, C. Y.; Yao, M.; Chen, Y. C. Toxicol. Appl. Pharmacol. 2008, 231, 208-215. https://doi.org/10.1016/j.taap.2008.04.009
  11. Fisichella, M.; Dabboue, H.; Bhattacharyya, S.; Saboungi, M. L.; Salvetat, J. P.; Hevor, T.; Guerin, M. Toxicol. In Vitro 2009, 23, 697-703. https://doi.org/10.1016/j.tiv.2009.02.007
  12. Laaksonen, T.; Santos, H.; Vihola, H.; Salonen, J.; Riikonen, J.; Heikkila, T.; Peltonen, L.; Kumar, N.; Murzin, D. Y.; Lehto, V. P.; Hirvonen, J. Chem. Res. Toxicol. 2007, 20, 1913-1918. https://doi.org/10.1021/tx700326b
  13. Alexiou, C.; Jurgons, R.; Schmid, R.; Erhardt, W.; Parak, F.; Bergemann, C.; Iro, H. Hno. 2005, 53, 618-622. https://doi.org/10.1007/s00106-004-1146-5
  14. Berry, C. C.; Wells, S.; Charles, S.; Curtis, A. S. Biomaterials 2003, 24, 4551-4557. https://doi.org/10.1016/S0142-9612(03)00237-0
  15. Brunner, T. J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R. N.; Limbach, L. K.; Bruinink, A.; Stark, W. J. Environ. Sci. Technol. 2006, 40, 4374-4381. https://doi.org/10.1021/es052069i
  16. Bregoli, L.; Chiarini, F.; Gambarelli, A.; Sighinolfi, G.; Gatti, A. M.; Santi, P.; Martelli, A. M.; Cocco, L. Toxicology 2009, 262, 121-129. https://doi.org/10.1016/j.tox.2009.05.017
  17. Kennedy, I. M.; Wilson, D.; Barakat, A. I. Res. Rep. Health Eff. Inst. 2009, 3-32.
  18. Karlsson, H. L.; Cronholm, P.; Gustafsson, J.; Moller, L. Chem. Res. Toxicol. 2008, 21, 1726-1732. https://doi.org/10.1021/tx800064j
  19. Huang, C. C.; Aronstam, R. S.; Chen, D. R.; Huang, Y. W. Toxicol. In Vitro 2009.
  20. Deng, X.; Luan, Q.; Chen, W.; Wang, Y.; Wu, M.; Zhang, H.; Jiao, Z. Nanotechnology 2009, 20, 115101. https://doi.org/10.1088/0957-4484/20/11/115101
  21. Sharma, V.; Shukla, R. K.; Saxena, N.; Parmar, D.; Das, M.; Dhawan, A. Toxicol. Lett 2009, 185, 211-218. https://doi.org/10.1016/j.toxlet.2009.01.008
  22. Hong, S. W.; Hong, S. M.; Yoo, J. W.; Lee, Y. C.; Kim, S.; Lis, J. T.; Lee, D. K. Proc. Natl. Acad Sci. USA 2009, 106, 14276-14280. https://doi.org/10.1073/pnas.0903642106
  23. Dennis, G., Jr.; Sherman, B. T.; Hosack, D. A.; Yang, J.; Gao, W.; Lane, H. C.; Lempicki, R. A. Genome. Biol. 2003, 4, P3. https://doi.org/10.1186/gb-2003-4-5-p3
  24. Gojova, A.; Guo, B.; Kota, R. S.; Rutledge, J. C.; Kennedy, I. M.; Barakat, A. I. Environ. Health Perspect. 2007, 115, 403-409. https://doi.org/10.1289/ehp.115-a403
  25. Cho, W. S.; Duffin, R.; Poland, C. A.; Duschl, A.; Oostingh, G. J.; Macnee, W.; Bradley, M.; Megson, I. L.; Donaldson, K. Nanotoxicology 2011.
  26. Baek, Y. W.; An, Y. J. Sci. Total Environ. 2011, 409, 1603-1608. https://doi.org/10.1016/j.scitotenv.2011.01.014
  27. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. J. Am. Chem. Soc. 2004, 126, 13216-13217. https://doi.org/10.1021/ja046275m
  28. Slowing, II.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Adv. Drug. Deliv. Rev. 2008, 60, 1278-1288. https://doi.org/10.1016/j.addr.2008.03.012
  29. Smirnov, P.; Lavergne, E.; Gazeau, F.; Lewin, M.; Boissonnas, A.; Doan, B. T.; Gillet, B.; Combadiere, C.; Combadiere, B.; Clement, O. Magn. Reson. Med. 2006, 56, 498-508. https://doi.org/10.1002/mrm.20996
  30. Smirnov, P.; Gazeau, F.; Lewin, M.; Bacri, J. C.; Siauve, N.; Vayssettes, C.; Cuenod, C. A.; Clement, O. Magn. Reson. Med. 2004, 52, 73-79. https://doi.org/10.1002/mrm.20121
  31. Cross, S. E.; Innes, B.; Roberts, M. S.; Tsuzuki, T.; Robertson, T. A.; McCormick, P. Skin Pharmacol. Physiol. 2007, 20, 148-154. https://doi.org/10.1159/000098701
  32. Nohynek, G. J.; Lademann, J.; Ribaud, C.; Roberts, M. S. Crit. Rev. Toxicol. 2007, 37, 251-277. https://doi.org/10.1080/10408440601177780
  33. Pardigol, A.; Forssmann, U.; Zucht, H. D.; Loetscher, P.; Schulz-Knappe, P.; Baggiolini, M.; Forssmann, W. G.; Magert, H. J. Proc. Natl. Acad Sci. U S A 1998, 95, 6308-6313. https://doi.org/10.1073/pnas.95.11.6308
  34. Nishina, H. W. T.; Katada, T. J. Biochem. 2004, 136, 123-126. https://doi.org/10.1093/jb/mvh117
  35. Snyder, S. K.; Wessner, D. H.; Wessells, J. L.; Waterhouse, R. M.; Wahl, L. M.; Zimmermann, W.; Dveksler, G. S. Am. J. Reprod. Immunol. 2001, 45, 205-216. https://doi.org/10.1111/j.8755-8920.2001.450403.x
  36. Kawata, K.; Osawa, M.; Okabe, S. Environ. Sci. Technol. 2009, 43, 6046-6051. https://doi.org/10.1021/es900754q
  37. Maser, R. L.; Vassmer, D.; Magenheimer, B. S.; Calvet, J. P. J. Am. Soc. Nephrol. 2002, 13, 991-999.

Cited by

  1. ) with different nanostructures vol.2, pp.1, 2012, https://doi.org/10.1039/C1CY00124H
  2. Iron-containing nanomaterials: synthesis, properties, and environmental applications vol.2, pp.25, 2012, https://doi.org/10.1039/c2ra20812a
  3. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review vol.87, pp.7, 2013, https://doi.org/10.1007/s00204-013-1079-4
  4. particles vol.10, pp.5, 2016, https://doi.org/10.3109/17435390.2015.1091107
  5. The effects of nanoparticles on the renal system vol.46, pp.6, 2016, https://doi.org/10.1080/10408444.2016.1181047
  6. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection vol.9, pp.1, 2016, https://doi.org/10.1146/annurev-anchem-071015-041514
  7. vol.105, pp.7, 2017, https://doi.org/10.1002/jbm.a.35994
  8. Role of omics techniques in the toxicity testing of nanoparticles vol.15, pp.1, 2017, https://doi.org/10.1186/s12951-017-0320-3
  9. Nanoparticles vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11187
  10. An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2369-14-96
  11. The Alkali Metal Interactions with MgO Nanotubes vol.33, pp.6, 2011, https://doi.org/10.5012/bkcs.2012.33.6.1925
  12. Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells vol.9, pp.None, 2011, https://doi.org/10.2147/ijn.s52625
  13. Transcriptomics-Based Characterization of the Toxicity of ZnO Nanoparticles Against Chronic Myeloid Leukemia Cells vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s261636
  14. Review on Metal-Based Nanoparticles: Role of Reactive Oxygen Species in Renal Toxicity vol.33, pp.10, 2011, https://doi.org/10.1021/acs.chemrestox.9b00438