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Abstract
The scope of this work investigates the relationship between the amount of oxygen-func-
tional groups and hydrogen adsorption capacity with different concentrations of phosphoric 
acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized 
by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore struc-
tures of ACs are investigated by N2/77 K adsorption isotherms. The hydrogen adsorption 
capacity is measured by H2 isothermal adsorption at 298 K and 100 bar. In the results, the 
specific surface area and pore volume slightly decreased with the chemical treatments due 
to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the 
oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron 
acceptor-donor interaction at interfaces. 
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1. Introduction

Hydrogen has attracted a great deal of attention as a clean energy source and alternative 
fuel. Economical and efficient on-board hydrogen storage systems are critical to the success 
of the proton exchange membrane fuel cell technology for transportation applications [1-3]. 
The currently available technologies for hydrogen storage are gas compression, cryogenic 
liquefaction, intercalation in host metal, metal hydrides, and hydrogen physisorption. Many 
studies are focusing on improving present technologies and searching for advanced materi-
als such as adsorbents [4]. Among them, carbonaceous materials are being investigated as 
potential hydrogen storage media because of their high specific surface area and large pore 
volume [5], and these carbonaceous materials include carbon nanotubes (CNTs) [6], carbon 
nanofibers (CNFs) [7,8], graphene [9,10], and traditional activated carbons (ACs) [11,12]. In 
particular, ACs have the advantage of low mass density, availability, and low cost compared 
with other carbonaceous materials such as CNTs, CNFs, and graphene [3,13,14]. Most of all, 
ACs have been widely used as adsorbent to remove organic or inorganic pollutants because 
of their extended specific surface area, high adsorption amount and rate, and specific surface 
reactivity [15,16].

Surface complexes onto carbonaceous materials are considered as an important factor in 
hydrogen adsorption [17]. It has been reported that hydrogen adsorption capacity on CNTs 
modified by acidic or basic chemical treatments are increased or diminished because of 
electron-withdrawing or -donating effects, and, as such, are primarily divided into acidic and 
basic groups, respectively [18]. 

In this study, we have investigated chemically treated ACs with H3PO4 concentrations. 
We have also studied the effects of pore structure and oxygen-functional groups of ACs on 
hydrogen adsorption behaviors.
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0.5, AC-1, and AC-2 were found to be 1,404 m2/g, 1,370 m2/g, 
and 1,270 m2/g for a specific surface area, respectively. It was 
found that the specific surface area and mesopore volume of all 
of the treated samples are slightly decreased by the introduction 
of oxygen-functional groups in the inner walls of pores, result-
ing in a decrease of mesopore sizes.

Fig. 2 shows the hydrogen adsorption behaviors of the sam-

2. Experimental

2.1 Materials and sample preparation

ACs were purchased from Tokyo Chemical Industry Co. 
Ltd. (Tokyo, Japan) Prior to the phosphoric acid treatment, ACs 
were washed several times with distilled water and dried in a 
vacuum oven at 90°C for 24 h. One gram of the ACs was im-
mersed with 50 mL different concentration phosphoric acid so-
lutions for 12 h at 40°C. The H3PO4 treated ACs samples were 
filtered and washed with distilled water and dried in a vacuum 
oven for 24 h at 80°C. The H3PO4-treated ACs had as-received 
H3PO4 concentrations denoted as AC-0.5, AC-1, and AC-2, re-
spectively.

2.2 Characterization

The surface analysis of ACs was studied by X-ray photoelec-
tron spectroscopy (XPS). XPS measurements were made with a 
Thermo Scientific (USA), K-Alpha device with a monochromat-
ed Al Kα X-ray source (1486.6 eV). Survey spectra were record-
ed at O1s and C1s photoelectron peaks. The porous texture of AC 
was investigated by N2/77 K adsorption/desorption isotherms 
using a gas adsorption analyzer with a BELSORP (Japan). 

2.3 Hydrogen storage capacity

The hydrogen uptake experiment was conducted under an 
ambient condition of 298 K and 100 bar, conditions compatible 
with future electric-vehicle applications. In each experiment, 
about 0.2 g of samples were loaded in a stainless chamber. Prior 
to measurement, the chamber was evacuated at 423 K for 2 h. 
After the chamber was cooled to room temperature, hydrogen 
was introduced until a pressure of 100 bar was attained. An 
ultra-high-purity grade (99.9999%) of hydrogen was used in 
this study so that the influences of moisture and other impurities 
could be excluded.

3. Results and Discussion

XPS analysis was carried out to analyze the elemental com-
position of the chemically treated ACs with the H3PO4 concen-
trations. The results are summarized in Table 1. After the H3PO4 
treatments, the oxygen content is increased in the range between 
12.1 and 17.5%. The O1s/C1s ratio is also increased with an in-
crease in the H3PO4 concentration.

Fig. 1 shows the nitrogen adsorption/desorption isotherms for 
the samples studied. It was found that the all samples are com-
posed of micropores and mesopores, showing from the Type I 
(relative pressure < 0.05) and Type IV (relative pressure range 
between 0.5 the 0.99), based on the classification recommended 
by International Union of Pure and Applied Chemistry [19]. De-
tailed information on the textural properties of the samples is 
listed in Table 2, and mesopore volume was determined from the 
Barret-Joyner-Halenda equation. As shown in Table 2, specific 
surface area and mesopore volumes gradually decreased with 
an increase in the H3PO4 concentrations. The porosities of AC-

Table 1. Elemental composition of the samples studied

Specimens
Atomic ratio (%)

C1s O1s O1s/C1s ratio

as-received 89.16 10.84 12.1

AC-0.5 87.03 12.97 14.9

AC-1 85.37 14.63 17.1

AC-2 85.10 14.90 17.5

AC: activated carbon.

Fig. 1. N2 adsorption/desorption isotherms at 77 K porosity parameters 
of the chemically treated activated carbons (ACs) with the H3PO4 concen-
trations.

Table 2. N2/77K textural properties of the samples studied

Specimens SBET
a

(m2/g)
VTotal

b

(cm3/g)
VMicro

 c

(cm3/g)
VMeso

d

(cm3/g)
DP

e

(nm)

as-received 1659 1.594 0.236 1.358 2.45

AC-0.5 1404 1.312 0.214 1.073 2.45

AC-1 1370 1.287 0.207 1.080 2.11

AC-2 1270 1.203 0.183 1.020 2.01

AC: activated carbon.
aSBET: Specific surface area calculated using Brunauer-Emmett-Teller 
equation at a relative pressure range of 0.03-0.22. 
bVTotal: Total pore volume is estimated at a relative pressure P/P0 = 0.990. 
cVMicro: Micropore volume is determined from the subtraction of meso-
pore volume from total pore volume. 
dVMeso: Mesopore volume is determined from the Barret-Joyner-Halen-
da (BJH) equation.
eDp: The mesopore size is calculated by the BJH model.
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4. Conclusions

In this work, the influence of chemical treatments with the 
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