DOI QR코드

DOI QR Code

Effects of Heat Treatment on the Micro-structures and the Mechanical Properties of 0.002% Boron-added Low Carbon Steel

0.002% 보론첨가 저탄소강의 미세조직 및 기계적 성질에 미치는 열처리의 영향

  • 임종호 ((재)포항금속소재산업진흥원) ;
  • 김종식 ((재)포항금속소재산업진흥원) ;
  • 박병호 ((재)포항금속소재산업진흥원) ;
  • 이진현 ((재)포항금속소재산업진흥원) ;
  • 최정묵 ((주)진합)
  • Received : 2011.04.21
  • Accepted : 2011.05.09
  • Published : 2011.06.27

Abstract

The effect of heat treatment on the micro-structures and the mechanical properties of 0.002% boron added low carbon steel was investigated. The tensile strength reached the peak at about $880-890^{\circ}C$ with the rising quenching temperature and then the hardness decreased sharply, but the tensile strength hardly decreased. The tensile and yield strength decreased and the total elongation increased with a rising tempering temperature, but the tensile and yield strength sharply fell and the total elongation prominently increased from above a $400-450^{\circ}C$ tempering temperature. Tempered martensite embrittlement (TME) was observed at tempering condition of $350-400^{\circ}C$. In the condition of quenching at $890^{\circ}C$ and tempering at $350^{\circ}C$, the boron precipitates were observed as Fe-C-B and BN together. The hardness decreased in proportion to the tempering temperature untill $350^{\circ}C$ and dropped sharply above $400^{\circ}C$ regardless of the quenching temperature.

Keywords

References

  1. N. E. Hannerz, ISIJ Int. 25, 149 (1985). https://doi.org/10.2355/isijinternational1966.25.149
  2. D. T. Liewllyn, Ironmaking and Steelmaking, 20, 136 (1993).
  3. B. M. Kapadia, Hardenability Concepts with Application to Steel, p. 448, AIME, Warrendale, Pennesylvania, USA (1978).
  4. R. C. Sharma and G. R. Purdy, Metall. Mater. Trans., 5, 939 (1974). https://doi.org/10.1007/BF02643152
  5. J. E. Morral and T. B. Cameron, Boron hardenability mechanisms, in Boron in Steel (Warrendale, PA, 1980), ed. S. K. Banerji and J. E. Morral, p. 19.
  6. Ph. Maitrepierre, D. Thivellier and R. Tricot, Metall. Mater. Trans., 6, 287 (1975). https://doi.org/10.1007/BF02667283
  7. R. C. Sharma and G. R. Purdy, Metall. Mater. Trans., 5, 939 (1974). https://doi.org/10.1007/BF02643152
  8. M. P. Manahan, J. Mater. Sci., 25, 3429 (1990). https://doi.org/10.1007/BF00575367
  9. H. Fu, Q. Xiao and H. Fu, Mater. Sci. Eng., A396, 206 (2005).
  10. J. Zeman, S. Rolc, J. Buchar and J. Pokluda, ASTM Special Technical Publication : Fracture Mechanics Twenty First Symposium (STP 1074-EB), p. 396, ASTM, PA, USA (1990). DOI: 10.1520/STP19006S.
  11. T. Swarr and G. Krauss, Metall. Meter. Trans., 7A, 41 (1976).
  12. J. M. Lee, Y. H. Kim and B. H. Hahn, J. Kor. Inst. Met. & Mater., 26, 1190 (1988).
  13. N. Takahashi and T. Fujita. Testu-to-Hagane, 61, 2604 (1975). https://doi.org/10.2355/tetsutohagane1955.61.11_2604
  14. K. Yamamoto, H. G. Suzuki, Y. Oono, N. Noda and T. Inoue, Tetsu-to-Hagane, 73, 115 (1987).
  15. Ph. Maitrepierre, D. Thivellier and R. Tricot, Metall. Mater. Trans., 6A, 287 (1975).
  16. L. Karlsson and H. Norden, Acta Metall., 36, 35 (1988). https://doi.org/10.1016/0001-6160(88)90026-0
  17. B. K. Ahn and K. S. Lee, J. Kor. Inst. Met. & Mater., 34, 166 (1996).
  18. K. C. Cho, Y. M. Koo and J. K. Park, J. Kor. Inst. Met. & Mater., 46, 329 (2008).
  19. W. J. Jadenska and J. E. Morral, Metall. Mater. Trans., 3A, 2933 (1972).

Cited by

  1. Evaluation of Workability on the Microstructure and Mechanical Property of Modified 9Cr-2W Steel for Fuel Cladding by Cold Drawing Process and Intermediate Heat Treatment Condition vol.8, pp.3, 2018, https://doi.org/10.3390/met8030193