DOI QR코드

DOI QR Code

Effect of Microstructure on Electrical Properties of Thin Film Alumina Capacitor with Metal Electrode

금속 전극 알루미나 박막 캐패시터의 전기적 특성에 미치는 미세구조의 영향

  • Jeong, Myung-Sun (Display and Nanosystem Laboratory, College of Engineering, Korea University) ;
  • Ju, Byeong-Kwon (Display and Nanosystem Laboratory, College of Engineering, Korea University) ;
  • Oh, Young-Jei (Future Convergence Technology Research Division, Korea Institute of Science and Technology) ;
  • Lee, Jeon-Kook (Future Convergence Technology Research Division, Korea Institute of Science and Technology)
  • 정명선 (고려대학교 전기전자전파공학과) ;
  • 주병권 (고려대학교 전기전자전파공학과) ;
  • 오영제 (한국과학기술연구원 미래융합기술연구본부) ;
  • 이전국 (한국과학기술연구원 미래융합기술연구본부)
  • Received : 2011.05.06
  • Accepted : 2011.05.16
  • Published : 2011.06.27

Abstract

The power capacitors used as vehicle inverters must have a small size, high capacitance, high voltage, fast response and wide operating temperature. Our thin film capacitor was fabricated by alumina layers as a dielectric material and a metal electrode instead of a liquid electrolyte in an aluminum electrolytic capacitor. We analyzed the micro structures and the electrical properties of the thin film capacitors fabricated by nano-channel alumina and metal electrodes. The metal electrode was filled into the alumina nano-channel by electroless nickel plating with polyethylene glycol and a palladium catalyst. The spherical metals were formed inside the alumina nano pores. The breakdown voltage and leakage current increased by the chemical reaction of the alumina layer and $PdCl_2$ solution. The thickness of the electroless plated nickel layer was 300 nm. We observed the nano pores in the interface between the alumina layer and the metal electrode. The alumina capacitors with nickel electrodes had a capacitance density of 100 $nF/cm^2$, dielectric loss of 0.01, breakdown voltage of 0.7MV/cm and leakage current of $10^4{\mu}A$.

Keywords

References

  1. J. -H. Jang, W. -S. Choi, C. -H. Lee, G. -H. Jeong, N. -J. Kim, C. -L. Yu, C. Park and S. -J. Suh, Scripta Mater., 63, 269 (2010). https://doi.org/10.1016/j.scriptamat.2010.04.004
  2. J. -H. Jang, C. -H. Lee, W. -S. Choi, N. -J. Kim, T. -Y. Kim, T. -Y. Kim, J. -H. Kim, C. Park and S. -J. Suh, J. Vac. Sci. Technol. B, 28(6), 1231 (2010). https://doi.org/10.1116/1.3506105
  3. Y. Song, J. -H. Seo, Y. -S. Lee and S. -K. Rha, Kor. J. Mater. Res., 19(6), 344 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.6.344
  4. T. -G. Woo, I. -S. Park, H. -W. Lee and K. -W. Seol, Kor. J. Mater. Res., 16(11), 710 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.11.710
  5. T. Ya. Safonova, D. R. Khairullin, G. A. Tsirlina, O. A. Petrii and S. U. Vassiliev, Electrochimica Acta, 50, 4752 (2005). https://doi.org/10.1016/j.electacta.2005.02.023
  6. S. -C. Park, K. -J. Min, K. H. Lee, Y. Jeong and Y. -B. Park, Kor. J. Mater. Res., 18(9), 486 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.9.486
  7. Z. Wang, O. Yaegashi, H. Sakaue, T. Takahagi and S. Shingubara, Jpn. J. Appl. Phys., 43, 7000 (2004). https://doi.org/10.1143/JJAP.43.7000
  8. S. Sawoo, D. Srimani, P. Dutta, R. Lahiri and A. Sarkar, Tetrahedron, 65, 4367 (2009). https://doi.org/10.1016/j.tet.2009.03.062