DOI QR코드

DOI QR Code

Degradation Behavior of Hydroxyapatite with Different Crystallinity in Simulated Body Fluid Solution

의사체액에서 수산화아파타이트의 결정성에 따른 분해거동

  • Jin, Hyeong-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Tae-Wan (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University)
  • Received : 2011.04.27
  • Accepted : 2011.05.30
  • Published : 2011.06.27

Abstract

Hydroxyapatite (HAp) powders with different crystallinities were synthesized at various calcination temperatures through the co-precipitation of $Ca(OH)_2$ and $H_3PO_4$. The degradation behavior of these HAp powders with different crystallinities was assessed in a simulated body fluid solution (SBF) for 8 weeks. Below $800^{\circ}C$, the powders were nonstochiometric HAp, and the single HAp phase was successfully synthesized at $800^{\circ}C$. The degree of crystallinity of the HAp powders increased with an increasing calcination temperature and varied in a range from 39.6% to 92.5%. In the low crystallinity HAp powders, the Ca and P ion concentrations of the SBF solution increased with an increasing soaking time, which indicated that the low crystallinity HAp degraded in the SBF solution. The mass of the HAp powders linearly decreased with respect to the soaking time, and the mass loss was higher at lower crystallinities. The mass loss ranged from 0.8% to 13.2% after 8 weeks. The crystallinity of the HAp powders increased with an increasing soaking time up to 4 weeks and then decreased because of HAp degradation. The pH of the SBF solution did not change much throughout the course of these experiments. These results suggested that the crystallinity of HAp can be used to control the degradation.

Keywords

References

  1. K. De Groot, Biomaterials, 1, 47 (1980). https://doi.org/10.1016/0142-9612(80)90059-9
  2. J. D. de Bruijn, Y. P. Bovell and C. A. Van Blittterswijk, Biomaterials, 15, 543 (1994). https://doi.org/10.1016/0142-9612(94)90021-3
  3. C. R. Nunes, S. J. Simske, R. Sachdeva and L. M. Wolford, J. Biomed. Mater. Res., 36, 560 (1997). https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<560::AID-JBM15>3.0.CO;2-E
  4. U. Heise, J. F. Osborn and F. Duwe, Int. Orthop., 14, 329 (1990).
  5. O. Kozo, T. Yamamuro, T. Nakamura and T. Kokubo, Biomaterials, 11, 265 (1990). https://doi.org/10.1016/0142-9612(90)90008-E
  6. H. Y. Song, Y. K. Min, H. M. Yang and J. Y. Mang, Kor. J. Mater. Res., 17(12), 669 (2007) (in Korean). https://doi.org/10.3740/MRSK.2007.17.12.669
  7. K. Rezwan, Q. Z. Chen, J. J. Blaker and A. R. Boccaccini, Biomaterials, 27, 3413 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039
  8. L. L. Hench, J. Am. Ceram. Soc., 81, 1705 (1998).
  9. J. O. Hollinger and G. C. Battistone, Clin. Orthop. Relat. Res., 207, 290 (1986).
  10. H. H. Jin, S. H. Min, Y. T. Hyun, H. C. Park and S. Y. Yoon, Kor. J. Mater. Res., 16(11), 676 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.11.676
  11. H. Oonishi, S. Kushitani and H. Iwaki, in Proceedings of the 8th International Symposium on Ceramics in Medicine (Ponte Vedra, FL, USA, Nov. 1995), ed. J. Wilson, L.L. Hench and D. Greenspan (Elsevier Science Ltd., USA, 1995) p.137.
  12. A. Oyane, K. Nakanishi, H. M. Kim, F. Miyaji, T. Kokubo, N. Soga and T. Nakamura, Biomaterials, 20, 79 (1999). https://doi.org/10.1016/S0142-9612(98)00146-X
  13. A. Benedetti, G. Cocco, G. Fagherazzi, B. Locardi and S. Meriani, J. Mater. Sci., 18, 1039 (1983). https://doi.org/10.1007/BF00551972
  14. S. H. Kwon, Y. K. Jun, S. H. Hong and H. E. Kim, J. Eur. Ceram. Soc., 23, 1039 (2003). https://doi.org/10.1016/S0955-2219(02)00263-7
  15. S. V. Dorozhkin, Progr. Cryst. Growth Char. Mater., 44, 45 (2002). https://doi.org/10.1016/S0960-8974(02)00004-9
  16. H. M. Kim, T. Miyazaki, T. Kokubo and T. Nakamura, Key Engineering Materials, 192-195, 47 (2000).
  17. R. Z. LeGeros, Clin. Mater., 14, 65 (1993). https://doi.org/10.1016/0267-6605(93)90049-D
  18. M. Benahmed, J. M. Bouler, D. Heymann, O. Gan and G. Daculsi, Biomaterials, 17, 2173 (1996). https://doi.org/10.1016/0142-9612(96)00046-4

Cited by

  1. Biocompatible Hydroxyapatite Ceramics Prepared from Natural Bones and Synthetic Materials vol.22, pp.6, 2012, https://doi.org/10.3740/MRSK.2012.22.6.285