DOI QR코드

DOI QR Code

SHRIMP Zircon U-Pb Geochronology, Geochemistry and Sr-Nd Isotopic Study of the Cheongju granitoid rocks

청주 화강암의 SHRIMP 저어콘 U-Pb 연대, 지구화학 및 Sr-Nd 동위원소 연구

  • Cheong, Won-Seok (Department of Earth & Environmental Sciences, Chungbuk National University) ;
  • Kim, Yoon-Sup (Department of Earth & Environmental Sciences, Chungbuk National University) ;
  • Na, Ki-Chang (Department of Earth & Environmental Sciences, Chungbuk National University)
  • 정원석 (충북대학교 자연과학대학 지구환경과학과) ;
  • 김윤섭 (충북대학교 자연과학대학 지구환경과학과) ;
  • 나기창 (충북대학교 자연과학대학 지구환경과학과)
  • Received : 2011.10.14
  • Accepted : 2011.12.12
  • Published : 2011.12.31

Abstract

The emplacement ages, whole-rock geochemistry and Sr-Nd isotopic compositions of granitoid rocks from Cheongju area, South Korea, were investigated for delineating their petrogenetic link to the Jurassic Daebo granitoid rocks. Zircon crystals were collected from the diorite, biotite granite and acidic dyke samples in a single outcrop. Cross-cutting relationships show that the emplacement of diorite was postdated by the intrusion of biotite granite. Both rocks have been subsequently intruded by acidic dyke. The U-Pb isotopic compositions of zircon from the diorite, biotite granite, and acidic dyke were measured using a SHRIMP-II ion microprobe, yielding the crystallization ages of $174{\pm}2Ma$, $170{\pm}2Ma$, and $170{\pm}5Ma$, respectively, with 95% confidence limits ($t{\sigma}$). The emplacement ages are consistent with those determined from the above relative ages. The major and trace element patterns of the rocks are consistent with those of the Jurassic Daebo granitoid rocks, possibly suggesting a subduction-related I-type granite. The geochemical signature is, however, betrayed by the Sr and Nd isotopic compositions of these rocks. The isotopic signatures suggest that the rocks were produced either by the partial melting of lower-crust or by the mantle-derived magma contaminated by the basement rocks during its ascent and/or emplacement. In addition, the inherited ages of zircons of the rocks (ca. 2.1, 1.8, 0.8 and 0.4 Ga) suggest a possible assimilation with crustal rocks from the Gyeonggi massif and Ogcheon metamorphic belt.

청주지역에 분포하는 화강암류 암석에 대한 SHRIMP 저어콘 U-Pb 연대측정, 전암 화학 및 전암 Sr-Nd 동위원소 특성을 살펴보고 이를 대보화강암체의 지구연대학적 및 지화학적 특성과 비교하였다. 청주 화강암체 내부의 섬록암에서 $174{\pm}2Ma$ ($t{\sigma}$), 이를 관입한 흑운모 화강암에서 $170{\pm}2Ma$ ($t{\sigma}$), 그리고 이 두 암 석을 모두 관입하는 산성암맥에서는 $170{\pm}5Ma$ ($t{\sigma}$)의 저어콘 연대가 산출하였다. 각 암석에서 측정한 절대연령은 노두에서 측정한 상대연령과 일치하며, 한반도 중부에 분포하는 대보화강암체에 대한 연대측정결과 (170-175 Ma)와도 부합된다. 청주 화강암체의 주원소 및 미량원소 분석 결과는 한반도 중부에 분포하는 대보화강암류 및 화강섬록암의 분석결과와 잘 일치하며, 섭입대와 관련한 I-type 화강암의 특성을 나타낸다. 하지만, Sr과 Nd 동위원소 조성은 청주 화강암체가 부화된 하부지각물질의 부분용융 산물이거나 지각 물질의 혼염 가능성을 지시한다. 더불어 저어콘의 상속핵 및 포획결정에서 산출되는 2.1, 1.8, 0.8 및 0.4 Ga의 다양한 저어콘 상속핵 연대는 연구지역 주변의 경기육괴와 옥천변성대의 암석들이 동화작용에 의해 혼염 되었을 것으로 판단된다.

Keywords

References

  1. 권영일, 진명식, 1974, 1:50,000 청주 지질도폭 및 설명서. 국립 지질 광물 연구소, 8p.
  2. 김남훈, 송용선, 박계헌, 이호선, 2009, 영남(소백산)육괴 북동부 평해지역 화강편마암류의 SHRIMP U-Pb 저콘 연대. 암석학회지, 18, 31-47.
  3. 박계헌, 김명정, 양윤석, 조경오, 2010, 한반도 쥐라기 심성 암의 연령분포. 암석학회지, 19, 269-281.
  4. 박계헌, 이태호, 이기욱, 2011, 옥천변성대 대향산 규암층 쇄설성 저어콘의 SHRIMP U-Pb 연령. 지질학회지, 47, 423-431.
  5. 송용선, 박계헌, 서재현, 조희제, 이기욱, 2011, 평창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대측정. 암석학회지, 20, 99-114.
  6. 윤현수, 홍세선, 이윤수, 2002, 포천-기산리 일대에 분포하는 쥐라기 대보화강암류의 암석 및 암석화학. 암석학회지, 11, 1-16.
  7. 이기욱, 최승호, 2009, 청주지역 화성암류의 SHRIMP UPb 연대측정. 추계지질과학연합회학술발표회 초록집, p. 215.
  8. 이종혁, 이민성, 박봉순, 1980, 1:50,000 미원 지질도폭 및 설명서. 자원개발 연구소, 29p.
  9. 이호선, 박계헌, 송용선, 김남훈, Yuji, O., 2010, 영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대. 암석학회지, 19, 103-108.
  10. 정창식, 정연중, 길영우, 정기영, 2003, 청주 화강암의 UPb 스핀연대, 한국광물학회 한국암석학회 공동학술발표회 논문집, 53p.
  11. 정연중, 정창식, 박천영, 신인현, 2008, 정읍엽리상화강암의 지구화학 및 동위원소 특성과 U-Pb 스핀연대. 지구과학회지, 29, 539-550.
  12. Baier, J., Audtat, A. and Keppler, H., 2008, The origin of the negative niobium tantalum anomaly in subduction zone magmas. Earth and Planetary Science Letters, 267, 290-300. https://doi.org/10.1016/j.epsl.2007.11.032
  13. Cheong, C.S. and Chang, H.W., 1996, Geochemistry of the Daebo granitic batholith in the central Ogcheon Belt, Korea: A preliminary report. Economic and Environmental Geology, 29, 483-493.
  14. Cheong, C.S. and Chang, H.W., 1997, Sr, Nd, and Pb isotope systematics of granitic rocks in the central Ogcheon Belt, Korea. Geochemical Journal, 31, 17-36. https://doi.org/10.2343/geochemj.31.17
  15. Cho, M., 2001, A continuation of Chinese ultrahigh-pressure belt in Korea: evidence from ion microprobe U-Pb zircon ages. Gondwana Research, 4, 708. https://doi.org/10.1016/S1342-937X(05)70505-0
  16. Cho, M., Cheong, W. and Kim, J. 2010, Geochronologic vs. lithotectonic subdivision of central Ogcheon Metamorphic Belt, Korea: Correlation with the Taean Formation and detrital zircon ages of the Hwanggangri Formation. The autumn joint conference, Geological Society of Korea, 61.
  17. Clarke, D.B., 1992, Granitoid rocks. Chapman & Hall, London, 283p.
  18. Claoue-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and $^{40}Ar/^{39}Ar $analysis. In: Berggren, W.A., Kent, D.B., Auberey, M.P. and Hardenbol, J.(eds.), Geochronology Time Scales and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication, 54, 3- 21.
  19. Cox, K.G., Bell, J.D. and Pankhurst, R.J., 1979, The interpretation of igneous rocks. George Allen & Unwin. London, 450p.
  20. DePaolo, D.J., 1981, A Neodymium and Strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research, 86, 10470-10488. https://doi.org/10.1029/JB086iB11p10470
  21. Faure, G., 1986, Principles of isotope geology. John Wiley and Sons, USA, 589p.
  22. Fedo., C.M., Sircombe, K.N. and Rainbird, R.H., 2003, Detrital zircon analysis of the sedimentary Record. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon. Reviews in Mineralogy & Geochemistry. 53. 277-304. https://doi.org/10.2113/0530277
  23. Goldstein, S.J., O'Nions, R.K., Hamilton, P.J., 1984. A $Sm{^{\circ}}{\copyright}$Nd isotopic study of atmospheric dusts and particulate from major river systems. Earth and Planetary Science Letters, 70, 221-236. https://doi.org/10.1016/0012-821X(84)90007-4
  24. Jwa, 1998, Temporal, spatial and geochemical discriminations of granitoids in South Korea. Resource Geology, 48, 273-284. https://doi.org/10.1111/j.1751-3928.1998.tb00024.x
  25. Jwa, 2004, Possible source rocks of Mesozoic granites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh: Earth Science, 95, 181-189. https://doi.org/10.1017/S0263593304000161
  26. Kee, W.S., Kim, S.W., Jeong, Y.J. and Kwon, S., 2010, Characteristics of Jurassic continental arc magmatism in South Korea: tectonic implications. Journal of Geology, 118, 305-323.
  27. KIGAM (Korea Institute of Geoscience and Mineral Resources), 1995, Geological Map of Korea (1:1,000,000 scale): Sungji Atlas Co., Seoul.
  28. Kim J., Yi, K., Jeong, Y.J. and Cheong, C.C., 2011, Geochronological and geochemical constraints on the petrogenesis of Mesozoic high-K granitoids in the central Korean peninsula. Gondwana Research, 20, 608-620. https://doi.org/10.1016/j.gr.2010.12.005
  29. Lan, C.Y., Lee, T., Zhou, X.H., and Kwon, S.T., 1995, Nd isotopic study of Precambrian basement of south Korea: evidence for early Archean crust. Geology, 23, 249-252. https://doi.org/10.1130/0091-7613(1995)023<0249:NISOPB>2.3.CO;2
  30. Lee, S.R., Cho, M., Yi, K.-W. and Stern, R., 2000. Early Proterozoic granulites in central Korea: tectonic correlation with Chinese cratons. Journal of Geology, 108, 729- 738. https://doi.org/10.1086/317951
  31. Lee, S.R., Cho, M., Hwang, J.H., Lee, B.-J., Kim, Y.-B. and Kim, J.C., 2003a, Crustal evolution of the Gyeonggi massif, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25-34. https://doi.org/10.1016/S0301-9268(02)00196-1
  32. Lee, S.R., Cho, M., Cheong, C.S., Kim, H.C. and Wingate, M.T.D., 2003b, Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research, 122, 297-310. https://doi.org/10.1016/S0301-9268(02)00216-4
  33. Ludwig, K.R., 2003, User's manual for Isoplot 3.00 a Geochronogical Toolkit for Mirosoft Excel. Berkeley Geochronology Center Special Publication, 47p.
  34. McCulloch, M.T. and Chappell, B.T., 1982, ND isotopic characteristics of S- and I-type granite. Earth and Planetary Science Letters, 58, 51-64. https://doi.org/10.1016/0012-821X(82)90102-9
  35. Miller, J.S., Matzel, J.E.P., Miller, C.F. and Burgess, S.D. and Miller, R.B., 2007, Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167, 282-299. https://doi.org/10.1016/j.jvolgeores.2007.04.019
  36. Pearce, J.A., 1982, Trace element characteristics of lavas from destructive plate boundaries. In Thorpe, R.S., eds. Andesites: Orogenic andesites and related rocks, Wiley, Chichester, 526-547.
  37. Paces, J.B. and Miller, J.D., 1993. Precise$ U{^{\circ}}{\copyright}$.Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research 98, 13997-14013. https://doi.org/10.1029/93JB01159
  38. Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation. Pearson, Prentice Hall, 352p.
  39. Sun, A.A. and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and process. In Saunders, A.D., and Norry, M.J., eds. Magmatism in the ocean basins. Geological Society of London, Special Publication. 42, 313- 345.
  40. Wasserburg, G.J., Jacobson, S.B., DePaolo, D.J., McCulloch, M.T. and Wen, T., 1981, Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimca Acta, 45, 2311-2323. https://doi.org/10.1016/0016-7037(81)90085-5
  41. White, A.J.R., and Chappell, B.W., 1983, Granitoid types and their distribution in the Lachlan fold belt, southeast Australia. Geological Society of America Memoir, 159, 21-34. https://doi.org/10.1130/MEM159-p21
  42. Williams, I.S., 1998. U-Th-Pb geochronology by ion microprobe. In: Mickibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of Micro Analytical Techniques to Understanding Mineralizing Processes. Reviews of Economic Geology 7, 1-35. https://doi.org/10.1080/07474938808800138
  43. Wilson, M., 1989. Igneous Petrogenesis - A Global tectonic approach, Kluwer Academic Publishers, 466p.

Cited by

  1. Recurrent rare earth element mineralization in the northwestern Okcheon Metamorphic Belt, Korea: SHRIMP U–Th–Pb geochronology, Nd isotope geochemistry, and tectonic implications vol.71, 2015, https://doi.org/10.1016/j.oregeorev.2015.05.012
  2. SHRIMP U-Pb ages and Hf isotopic composition of the detrital zircons from the Myogok Formation, SE Korea: development of terrestrial basin and igneous activity during the early Cretaceous vol.19, pp.2, 2015, https://doi.org/10.1007/s12303-014-0042-6
  3. Characteristics of Nd Isotopic Compositions of the Phanerozoic Granitoids of Korea and Their Genetic Significance vol.23, pp.3, 2014, https://doi.org/10.7854/JPSK.2014.23.3.279