DOI QR코드

DOI QR Code

Alignment film abrasion caused by rubbing

  • Kamada, Hirokazu (Department of Electrical Engineering, Nagaoka University of Technology) ;
  • Ihara, Ikuo (Department of Mechanical Engineering, Nagaoka University of Technology) ;
  • Kim, Hong-Dae (Department of Electrical Engineering, Nagaoka University of Technology) ;
  • Nakayama, Tadachika (Department of Electrical Engineering, Nagaoka University of Technology) ;
  • Kimura, Munehiro (Department of Electrical Engineering, Nagaoka University of Technology) ;
  • Akahane, Tadashi (Department of Electrical Engineering, Nagaoka University of Technology)
  • Received : 2011.06.03
  • Accepted : 2011.08.26
  • Published : 2011.12.31

Abstract

The alignment film abrasion caused by the rubbing process was quantitatively evaluated via atomic-force microscopy (AFM). First, a patterned alignment film structure, which was molded through the imprint method, was artificially formed. Then, the surface topography of the alignment film was evaluated via AFM after rubbing, and the degree of abrasion of the alignment film was estimated by subtracting the value after rubbing from the value before rubbing. It was recognized that the degree of abrasion increased with an increase in the rubbing strength. The relationship between the number of rubbing cycles and the degree of abrasion of the alignment film was also estimated.

Keywords

References

  1. C. Mauguin, Bull. Soc. fr. Miner. 34, 71 (1911).
  2. B. Bahadur, Liquid Crystals: Applications and Uses (World Scientific, Singapore, 1990), Vol. 1, Chap. 7.
  3. M.K. Ghosh and K.L. Mittal, Polyimides: Fundamentals and Applications (Marcel Dekker, New York, NY, 1996), Chap. 24.
  4. S.W. Lee, S.J. Lee, S.G. Hahm, T.J. Lee, B. Lee, B. Chae, S.B. Kim, J.C. Jung, W.C. Zin, B.H. Sohn, and M. Ree, Macromolecules 38, 4331 (2005). https://doi.org/10.1021/ma047856z
  5. N.A.J.M. van Aerle, J. Soc. Inf. Disp. 2, 41 (1994). https://doi.org/10.1889/1.1984907
  6. K.-Y. Han and T. Uchida, J. Soc. Inf. Disp. 3, 15 (1995). https://doi.org/10.1889/1.1984936
  7. D.-H. Chung, Y. Takanishi, K. Ishikawa, H. Takezoe, B. Park, Y. Jung, H.-K. Hwang, S. Lee, K.-J. Han, and S.-H. Jang, Jpn. J. Appl. Phys. 39, L185 (2000). https://doi.org/10.1143/JJAP.39.L185
  8. H.-K. Hong and C.-R. Seo, Jpn. J. Appl. Phys. 43, 7639 (2004). https://doi.org/10.1143/JJAP.43.7639
  9. W. Zheng, C.-H. Lu, and Y.-C. Ye, Jpn. J. Appl. Phys. 47, 1651 (2008). https://doi.org/10.1143/JJAP.47.1651
  10. H. Tabira, T. Inoue, Y. Yahagi, H. Imayama, and M. Morimoto, J. Soc. Inf. Disp. 10, 329 (2002). https://doi.org/10.1889/1.1827886
  11. K.-M. Son, S.-K. Kim, J.-W. Lee, S.-Y. Noh, J.-P. Kim, S.-R. Park, J.-Y. Yang, M.-S. Yang, I.-B. Kang, and I.-J. Chung, J. Soc. Inf. Disp. 18, 37 (2010). https://doi.org/10.1889/JSID18.1.37
  12. H. Seki, Y. Masuda, and T. Uchida, Mol. Cryst. Liq. Cryst. 282, 323 (1996). https://doi.org/10.1080/10587259608037586
  13. M.P. Mahajan and C. Rosenblatt, J. Appl. Phys. 83, 7649 (1998). https://doi.org/10.1063/1.367883
  14. S.Y. Chou, P.R. Krauss, and P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995). https://doi.org/10.1063/1.114851
  15. R. Ozaki, T. Shinpo, K.Yoshino, M. Ozaki, and H. Moritake, Appl. Phys. Express 1, 012003 (2008). https://doi.org/10.1143/APEX.1.012003
  16. Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J.E. Maclennan, and N.A. Clark, Phys. Rev. E 79, 041701 (2009). https://doi.org/10.1103/PhysRevE.79.041701
  17. J.-Y. Chun and D.-S. Seo, Jpn. J. Appl. Phys. 49, 040210 (2010). https://doi.org/10.1143/JJAP.49.040210
  18. H. Takahashi, T. Sakamoto, and H. Okada, J. Appl. Phys. 108, 113529 (2010). https://doi.org/10.1063/1.3505758
  19. H. Miyajima, T. Arikawa, T. Hidaka, K. Tokuda, and K. Matsumoto, Sens. Actuators A 117, 341 (2005). https://doi.org/10.1016/j.sna.2004.04.059
  20. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
  21. C. Lee, N.P. Iyer, and H. Han, J. Polym. Sci. B 42, 2202 (2004). https://doi.org/10.1002/polb.20081
  22. Y. Sato, K. Sato, and T. Uchida, Jpn. J. Appl. Phys. 31, L579 (1992). https://doi.org/10.1143/JJAP.31.L579
  23. T. Uchida, E.S. Lee, and T. Miyashita, Tech. Rep. IEICE (EID94-86), 94, 327, 47 (1994) (in Japanese).

Cited by

  1. Relationship between rubbing-induced anisotropy and surface azimuthal anchoring energy of nematic liquid crystals : Rubbing-induced anisotropy and azimuthal anchoring vol.21, pp.2, 2013, https://doi.org/10.1002/jsid.149
  2. Twisted-nematic-mode liquid crystal display with a DNA alignment layer vol.16, pp.3, 2011, https://doi.org/10.1080/15980316.2015.1072114