DOI QR코드

DOI QR Code

Integration of solution-processed polymer thin-film transistors for reflective liquid crystal applications

  • Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University) ;
  • Kim, Min-Hoi (School of Electrical Engineering, Seoul National University) ;
  • Suh, Min-Chul (Department of Information Display, Kyung Hee University) ;
  • Mo, Yeon-Gon (R&D Center, Samsung Mobile Display, Co., Ltd.) ;
  • Chang, Seung-Wook (R&D Center, Samsung Mobile Display, Co., Ltd.) ;
  • Lee, Sin-Doo (School of Electrical Engineering, Seoul National University)
  • Received : 2011.07.12
  • Accepted : 2011.08.23
  • Published : 2011.12.31

Abstract

Herein, the integration of solution-processed polymer thin-film transistors (TFTs) that were fabricated using selective wettability through ultraviolet (UV) exposure into a reflective liquid crystal display is demonstrated. From the experimental results of energy-dispersive spectroscopy, the composition of carbon and fluorine enhancing the hydrophobicity in the polymer chains was found to play a critical role in the wetting selectivity upon UV exposure. The polymer TFTs fabricated through the wettability-patterning process exhibited long-term stability and reliability. This wetting-selectivity-based patterning technique will be useful for constructing different types of solution-processed electronic and optoelectronic devices.

Keywords

References

  1. H. Sirringhaus, N. Tessler, and R.H. Friend, Science 280, 1741 (1998). https://doi.org/10.1126/science.280.5370.1741
  2. G.H. Gelinck, H.E. Huitema, E.V. Veenendall, E. Cantatore, L. Schrijnemakers, J.B.P.H.V.D. Putten, T.C.T. Genus, M. Beenhakkers, J.B. Giesbers, B.-H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E.V. Rens, and D.M.De. Leeuw, Nat. Mater. 3, 106 (2004). https://doi.org/10.1038/nmat1061
  3. L.S. Zhou, A. Wanga, S.C. Wu, J. Sun, S. Park, and T.N. Jackson, Appl. Phys. Lett. 88, 083502 (2006). https://doi.org/10.1063/1.2178213
  4. H. Klauk, U. Zschieschang, J. Pflaum , and M. Halik, Nature 445, 745 (2007). https://doi.org/10.1038/nature05533
  5. X.H. Zhang, W.J. Potscavage, S. Choi, and B. Kippelen, Appl. Phys. Lett. 94, 043312 (2009). https://doi.org/10.1063/1.3077025
  6. D. Voss, Nature 407, 442 (2000). https://doi.org/10.1038/35035212
  7. R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. Shchekin, and A. Dodabalapur, Appl. Phys. Lett. 88, 123502 (2006). https://doi.org/10.1063/1.2186384
  8. Z.-T. Zhu, J.T. Mason, R. Dieckmann, and G.G. Malliaras, Appl. Phys. Lett. 81, 4643 (2002). https://doi.org/10.1063/1.1527233
  9. L. Torsi, G.M. Farinola, F. Marinelli, M.C. Tanese, O.H. Omar, L. Valli, F. Babudri, F. Palmisano, P.G. Zambonin, and F. Naso, Nat. Mater. 7, 412 (2008). https://doi.org/10.1038/nmat2167
  10. L. Torsi, F. Marinelli, M.D. Angione, A. Dell'Aquila, N. Cioffi, E. De Giglio, and L. Sabbatini, Org. Electron. 10, 233 (2009). https://doi.org/10.1016/j.orgel.2008.11.009
  11. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger,M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004). https://doi.org/10.1038/nature02987
  12. C.D. Dimitrakopoulos and P.R.L. Malenfant, Adv. Mater. 14, 99 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  13. M.M. Ling and Z. Bao, Chem. Mater. 16, 4824 (2004). https://doi.org/10.1021/cm0496117
  14. S.-J. Kim, T. Ahn, M.C. Suh, C.-J. Yu, D.-W. Kim, and S.-D. Lee, Jpn. J. Appl. Phys. 44, L1109 (2005). https://doi.org/10.1143/JJAP.44.L1109
  15. S.-J. Kim, J.-H. Bae, T. Ahn, M.C. Suh, S.W. Chang, Y.-G. Mo, H.-K. Chung, and S.-D. Lee, Proc. 7th Int'l Meeting on Information Display (IMID 2007), 152 (2007).
  16. H.M. Philips, D.L. Callahan, R. Sauerberey, G. Szabo, and Z. Bor, Appl. Phys. Lett. 58, 2761 (1991). https://doi.org/10.1063/1.104778
  17. R. Srinivasan and B. Braren, Chem. Rev. 89, 1303(1989). https://doi.org/10.1021/cr00096a003
  18. C.S. Dulcey, J.H. Georger, Jr, V. Krauthamer, D.A. Stenger, T.L. Fare, and J.M. Calvert, Science 252, 551 (1991). https://doi.org/10.1126/science.2020853
  19. D.D. Saperstein and L.J. Lin, Langmuir 6, 1522 (1999).
  20. W.J. Leigh, Chem. Rev. 93, 487 (1993). https://doi.org/10.1021/cr00017a021
  21. K.P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004). https://doi.org/10.1063/1.1810205
  22. Y. Wu, P. Liu, B.S. Ong, T. Srikumar, N. Zhao, G. Botton, and S. Zhu, Appl. Phys. Lett. 86, 142102 (2005). https://doi.org/10.1063/1.1894597
  23. H.E. Katz, Z. Bao, and S.L. Gilat, Acc. Chem. Res. 34, 359 (2001). https://doi.org/10.1021/ar990114j
  24. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard,B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, and R.M. De Leeuw, Nature 401, 685 (1999). https://doi.org/10.1038/44359