DOI QR코드

DOI QR Code

Characteristics of Flow Field at Curved Section of Oil Fence using PIV Measurements and CFD Simulations

PIV 계측과 CFD 해석을 통한 오일펜스 만곡부 단면에서의 유동장 특성

  • Kim, Tae-Ho (School of Marine Technology, Chonnam National University) ;
  • Jang, Duck-Jong (Department of Maritime Police Science, Chonnam National University) ;
  • Na, Sun-Chol (Korea Marine Environment Management Corporation) ;
  • Bae, Jae-Hyun (Kum Young Co., Ltd.) ;
  • Kim, Dae-An (School of Marine Technology, Chonnam National University)
  • Received : 2011.01.31
  • Accepted : 2011.03.24
  • Published : 2011.03.31

Abstract

PIV measurements of the velocity field, pressure field, vorticity, and turbulent intensity in the rear of curved section of an oil fence with current speed showed that the flow directions in the rear of flow boundary area were similar to those in the front of it. As the current speed increased, the patterns of pressure distribution were changed, and the turbulent flow became more irregular. CFD simulations under the same conditions as the PIV tests showed that the flow patterns of the wake were similar to those by PIV tests in speed of 0.3 m/s and less, but were distinctively deviated from those in 0.4 m/s due to the flexibility of the oil fence, which was not properly taken care of in CFD modeling.

유속의 변화에 따른 오일펜스 만곡부 후면의 속도장과 압력장, 와도 및 난류 강도를 계측한 PIV 실험의 결과 유속이 증가함에 따라 유동 경계역의 후면부에서의 흐름 방향이 전면부의 흐름 방향에 가까워지는 현상이 나타났고, 압력 분포의 양상이 달라졌으며 난류도 더욱 불규칙적인 형태로 나타났다. PIV 실험과 동일 조건으로 수행한 CFD 해석 결과, 후류의 유동 패턴이 0.3m/s이하의 저속인 경우는 PIV 실험 결과와 유사하게 나타났으나, 유속이 0.4m/s일 때는 오일펜스 자체의 유연성으로 인해 다소 차이가 나타났고, 오일펜스 하단의 압력차로 인한 불규칙한 난류가 수면까지 영향을 주었다.

Keywords

References

  1. Brown, H. M., R. H. Goodman, C. F. An and J. Bittner(1996), Boom failure mechanism : Comparison of channel experiments with computer modelling results. Spill Sci. Tech. Bull., Vol. 3, No. 4, pp. 217-220. https://doi.org/10.1016/S1353-2561(97)00016-9
  2. Delvigne, G. A. L.(1983b), Laboratory experiments on oil spill protection of a water intake, Proc., Oil and Freshwater Conf., pp. 446-458.
  3. Fang, F. and A. J. Johnston(2001a), Oil containment by boom in waves and wind I : Numerical model, J. Waterway, Port, Coastal, Ocean Eng., pp. 222-227.
  4. Fang, F. and A, J. Johnston(2001b), Oil containment by boom in waves and wind II : Waves, J. Waterway, Port, Coastal, Ocean Eng., pp. 228-233.
  5. Fannelop, T. H.(1983), Loss rates and operational limits for booms used as barriers, Appl. Ocean Res., Vol. 5, No. 2, p. 80. https://doi.org/10.1016/0141-1187(83)90020-2
  6. Goodman, R. H., H. M. Brown, C. F. An and R. D. Rowe(1997), Dynamic modeling of oil boom failure using computational fluid dynamics, Proc., 20th Arctic and Marine Oil Spill Program(AMOP) Tech. Seminar, pp. 437-455.
  7. Kim, T. H., D. J. Jang, K. U. Yang, S. C. Na and D. A. Kim(2008), Efficiency of model oil fences for one vessel using a physical experiment and numerical calculation, J. Kor. Fish. Soc.,Vol. 41, No. 2, pp. 143-172.
  8. Kim, T. H., D. J. Jang, K. U. Yang, S. C. Na and D. A. Kim(2009), Comparison between full-scale and model experiments of oil fence, China Ocean Eng., Vol. 23, No. 4, pp. 657-668.
  9. Launder, B. E. and D. B. Spalding(1974), The numerical computation of turbulent flow's computer methods in applied mechanics and engineering.3, pp. 269-289.
  10. Oebius, H. U.(1999), Physical properties and processes that influence the cleanup of oil spills in the marine environment, Spill Sci. Tech. Bull., Vol. 5, pp. 177-289. https://doi.org/10.1016/S1353-2561(99)00048-1