Experimental and Theory for Relaxation Spectrum of Polyacrylonitrile-Poly(vinyl chloride) Copolymers

Polyacrylonitrile-Poly(vinyl chloride) 공중합체 완화스펙트럼의 실험과 이론적인 고찰

  • Received : 2010.11.10
  • Accepted : 2010.12.21
  • Published : 2011.05.25

Abstract

The relaxation spectra of polyacrylonitrile-poly(vinyl chloride) copolymer filament fibers were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The theoretical equation of relaxation spectrum was derived from the Ree-Eyring and Maxwell model. The experimental of stress relaxation was carried out using a tensile tester with a solvent chamber. The determination of relaxation spectra was performed by computer calculation. From the relaxation spectra, the fine structures, viscoelastic properties and hole volumes of solid polymers were studied. It was observed that the relaxation spectra of these samples were directly related to the distribution of molecular weights and self diffusions of flow segments.

Polyacrylonitrile-poly (vinyl chloride) 공중합체의 완화스펙트럼을 이론적인 완화스펙트럼 식에 실험적인 응력완화 곡선을 대입하여 계산하였다. 이론적인 완화스펙트럼 식은 Ree-Eyring and Maxwell 모델로부터 유도하였다. 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하였다. 완화스펙트럼의 계산은 컴퓨터 프로그램을 이용하였으며, 완화스펙트럼으로부터 고체 고분자의 미세구조, 점탄성적인 성실, 홀 부피가 연구되었다. 또한 이들 시료의 완화스펙트럼은 유동단위의 분자량과 자체확산 분포와 밀접한 관계가 있음을 알 수 있었다.

Keywords

References

  1. B. H. Bersted, J. Appl. Polym. Soc., 19, 2167 (1975). https://doi.org/10.1002/app.1975.070190810
  2. M. Shida and R. N. Shroff, Trans. Soc. Rheology, 14, 605 (1970). https://doi.org/10.1122/1.549181
  3. J. Honerkamp and J. Weese, Macromolecules, 22, 4372 (1989) https://doi.org/10.1021/ma00201a036
  4. R. H. Blanc, Rheol. Acta, 27, 482 (1988). https://doi.org/10.1007/BF01329347
  5. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York, 1980.
  6. R. D. Andrews and A. V. Tovolsky, J. Polym. Sci., 7, 221 (1950).
  7. T. L. Smith, J. Polym. Sci., 20, 89 (1956). https://doi.org/10.1002/pol.1956.120209408
  8. S. J. Hahn, T. Ree, and H. Eyring, in Non-Crystalline Solids, V. D. Frechette, Editor, John Wiley, New York, pp.297-361 (1960).
  9. K. Morimoto and T. Suzuki, Polym. Eng. Sci., 24, 1000 (1984). https://doi.org/10.1002/pen.760241209
  10. C. Elster, J. Honercamp, and J. Weese, Rheol. Acta, 31, 161 (1992). https://doi.org/10.1007/BF00373238
  11. J. Honercamp and J. Weese, Rheol. Acta, 32, 65 (1993). https://doi.org/10.1007/BF00396678
  12. I. V. Yannas, J. Polym. Sci., Macro. Rev., 9, 163 (1974). https://doi.org/10.1002/pol.1974.230090104
  13. M. Baumgaertel and H. H. Winter, Rheol. Acta, 28, 511 (1989). https://doi.org/10.1007/BF01332922
  14. M. Baumgaertel, A. Schausberger, and H. H. Winter, Rheol. Acta, 29, 400 (1990). https://doi.org/10.1007/BF01376790
  15. N. Orbey and M. D. Dealy, J. Rheol., 35, 30 (1991).
  16. N. J. Kim, E. R. Kim, and S. J. Hahn, Bull. Korean Chem. Soc., 13, 413 (1992).
  17. N. J. Kim, E. R. Kim, and S. J. Hahn, Bull. Korean Chem. Soc., 12, 468 (1991).
  18. N. J. Kim, J. Korean Chem. Soc., 50, 196 (2006). https://doi.org/10.5012/jkcs.2006.50.3.196
  19. E. B. Chakraa, J. C. Barrioza, D. Mazuyera, F. Jarniasb, and A. Bouffetb, Tribology International, 43, 1674 (2010). https://doi.org/10.1016/j.triboint.2010.03.016
  20. J. J. M. Baltussen and M. G. Northoltb, Polymer, 45, 1717 (2004). https://doi.org/10.1016/j.polymer.2003.11.033