DOI QR코드

DOI QR Code

Major Molybdenum Mineralization and Igneous Activity, South Korea

남한의 주요 몰리브덴 광화작용과 화성활동

  • 최선규 (고려대학교 지구환경과학과) ;
  • 구민호 (고려대학교 지구환경과학과) ;
  • 강흥석 (한국광물자원공사) ;
  • 안용환 (고려대학교 지구환경과학과)
  • Received : 2011.02.01
  • Accepted : 2011.04.18
  • Published : 2011.04.28

Abstract

The major Mo deposits in South Korea were formed during the Jurassic Daebo orogeny, the Late Cretaceous and the Tertiary post-orogenic igneous activities, and are characterized by a variety of genetic types such as pegmatite, greisen, skarn, porphyry and vein types. The Jangsu mine is a pegmatite-style deposit which is genetically related to the Jurassic ilmenite-series two-mica granite with the Mo mineralization age of $159.6{\pm}4.5$ Ma. The Geumseong mine occurs as a skarn/porphyry-style deposit associated with highly fractionated granite. Its age of Mo mineralization within aplitic cupola is about 96.5~l07.5 Ma. The Yeonil mine is a porphyry-style deposit, and the Geumeum mine is a veinlet-style deposit along the fracture zone with their mineralization ages of $58.4{\pm}1.6$ and $54.4{\pm}1.2$ Ma, respectively. The contrasts in the style of Mo mineralization in Korea reflect the different environment of the related magmatism. The Jurassic mineralization, being related to deep-seated granitoids, occurs as a pegmatite-style deposit, whereas the Cretaceous one, being related to subvolcanic granitoids, occurs as skarn/porphyry/vein-type ore deposits. The Tertiary Mo mineralization has a close relationship with the igneous activities associated with the Tertiary basin formation along the east coast, Korean peninsular.

국내 주요 몰리브덴 광상은 쥐라기 대보 조산운동기부터 후조산기인 백악기를 거쳐 제삼기까지 페그마이트형, 그라이센형, 스카른형, 반암형, 광맥형 광상과 같은 다양한 광상 유형으로 배태되고 있다. 장수 몰리브덴 광산은 쥐라기 티탄철석 계열 복운모 화강암과 관련된 페그마타이트 광상으로 배태되며, 광화 시기는 $159.6{\pm}4.5$ Ma이다. 금성 몰리브덴 광산은 분화가 매우 진행된 화강암과 관련된 스카른형/반암형 광상으로 큐폴라 광체의 광화시기는 96.5~107.5 Ma를 보이며, 황강리 광화대에 나타나는 후기 백악기 광화시기와 일치하고 있다. 연일 몰리브덴 광산은 반암형 광상으로 배태되고, 금음 몰리브덴 광산은 전단대를 따라 충진하는 석영 세맥으로 배태되며, 광화 시기는 각각 $58.4{\pm}1.6$ Ma과 $54.4{\pm}1.2$ Ma이다. 한국의 중생대 몰리브덴 광상은 조구조적 전화 특성에 따라 쥐라기에는 심부 화성활동을 반영한 페그마타이트질 맥상 광상으로 산출되는 반면, 백악기에는 천부 화성활동과 관련된 스카른형/반암형/광맥형 광상으로 배태된다. 특히 제삼기 몰리브덴 광화작용은 한반도 동해안을 따라 배태되는 제삼기 분지형성과 연계된 화성활동과 밀접한 관계를 보이고 있다.

Keywords

Acknowledgement

Grant : Mo 광화작용과 화성활동

Supported by : 한국에너지기술평가원, 고려대학교

References

  1. Ahn, Y.H., Choi, S.-G., Lee, J.Y., Kim, T.H. and Yoo, I.K. (2009) Genetic environmental of the Geumeum Mo(- Cu) mineralization in Korea. J. Geochem. Exploration, v.101, p.1. https://doi.org/10.1016/j.gexplo.2008.12.025
  2. Carten R.B., White, W.H. and Stein, H.J. (1993) High grade granite-related molybdenum system: Classification and origin. In: Kirkham, R.V., Sinclair, W.D., Thorde, R.I. and Duke, J.M. (eds.) Mineral deposit modeling. Geol. Ass. Canada Spec. Paper, v.40, p.521- 554.
  3. Chang, K.H., Woo B.G., Lee J.H., Park S.O. and Akira Y. (1990) Cretaceous and early Cenozoic stratigraphy and history of eastern Kyongsang Basin, south Korea. J. Geol. Korea, v.26, p.471-487.
  4. Cheong, C.S., Kwon, S.T., Kim, J.M., Chang, B.U. (1998) Geochemical and isotopic study of the Onjeongri grnite in the northern Gyeongsang Basin, Korea: Comparison with Cretceous to Tertiary grnitic rock in the other part of the Gyeongsang Basin and the inner zone of southwest Japan. J. Petro. Soc. Korea, v.7, p.77-97.
  5. Cheong, C.S., Kwon, S.T. and Sagong, H. (2002) Geochemical and Sr-Nd-Pb isotopic investigation of Triassic grnitoids and basement rocks in the northern Gyeongsang Basin, Korea: Implications for the young basement in the east Asian continental margin. Island Arc, v.11, p.25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  6. Cho, D. R. and Kwon, S. T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. J. Geol. Soc. Korea, v.30, p.41-61.
  7. Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S. and Pak, S.J. (2005) Origin of Mesozoic gold deposits in South Korea. Island Arc, v.14, p.102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  8. Choi, S.-G. and Pak, S.J. (2007) The origin and evolution of the Mesozoic ore-forming fluids in South Korea: Their genetic implications. Econ. Env. Geol., v.40, p.517-535.
  9. Choi, S.-G., Pak, S.J., Kim, S.W., Kim, C.S. and Oh, C.-W. (2006) Mesozoic gold-silver mineralization in south Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Env. Geol., v.39, p.567-581.
  10. Choi, S.-G., Park, J.W., Seo, J., Kim, C.-S., Ahn, Y.-H., Shim, J.-K., Kim, N.H. and Yoo, I.K (2007a) Vertical zoning patterns and magmatic-hydrothermal evolution of the Geumseong Mo deposit, South Korea, In Digging Deeper, v.2, p.1327-1330.
  11. Choi, S.-G., Park, J.W., Seo, J., Kim, C.S., Shin, J.-K., Kim, N.H., Yoo, I.K. Lee, J.Y. and Ahn, Y.-H., (2007b) Hidden porphyry-related ore potential of the Geumseong Mo deposit and its genetic environment. Econ. Env. Geol., v.40, p.1-14.
  12. Choo, S.H., Jin, M.S., Yun, H.S. and Kim, D.H. (1982) Rb- Sr age determinations on granite gneiss and granite in Seosan, Onjeongri granite and Mesozoic granites along the east coast, Korean peninsula. Korea Inst. Geosci. Min. Resource, Geosci. Min. Resorce, v.13, p.193-208.
  13. Dill, H.G. (2010) Theìchessboardîclassification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth-Science Reviews, v.100, p.1-420. https://doi.org/10.1016/j.earscirev.2009.10.011
  14. Ernst, W.G. (2010) Late Mesozoic subduction-induced hydrothermal gold deposits along the eastern Asian and northern Califonian margins: Oceanic versus continental lithospheric underflow. Island Arc, v.19, p.213-219. https://doi.org/10.1111/j.1440-1738.2010.00709.x
  15. Hart, C.J.R., Mair, J.L., Goldfarb, R.J. and Groves, D.I. (2004) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone- Tungsten Belt, Yukon Territory, Canada. Trans. of the Royal Society of Edinburgh, Earth Sciences, v.95, Part 1/2, p.339-356. https://doi.org/10.1017/S0263593304000276
  16. Hong, S. S. (2001) Implication for the emplacement depth of granites in the Yeongnam Massif, using the aluminum-in-hornblende barometry. J. Petro. Soc. Korea, v.10, p.36-55.
  17. Hong, S.S. and Cho. D.R. (2003) Late mesozoic-Cenozoic tectonic evolution of Korea(3). KIGAM, KR-03-01, p.455-526.
  18. Ishihara, S., Jin, M.S. and Terashima, S. (2005) Morelated adakitic granitoids from non-island arc setting: Jecheon pluton of South Korea. Resource Geol., v.55, p.385-396. https://doi.org/10.1111/j.1751-3928.2005.tb00259.x
  19. Ishihara, S., Kajiwara, Y. and Jin, M.S. (2002) Possible carbonate origin of ore sulfur from Geumseong Mo deposits, South Korea. Resource Geol., v.52, p.279- 282. https://doi.org/10.1111/j.1751-3928.2002.tb00138.x
  20. Jin, M.S. (1995) Geochronology and cooling history of the Mesozoic granite pluton in the central part of the Ogcheon fold belt, South Korea. J. Petrol. Soc. Korea, v.4, p.153-167.
  21. Jin, M.S, Kim, S.J., Shin, S.C., Choo, S.H. and Chi, S.J. (1992) Thermal history of the Jecheon granite pluton in the Ogcheon fold belt, south Korea. J. Petrol. Soc. Korea, v.1, p.49-57.
  22. Jin, M.S., Lee,Y.S. and Ishihara, S. (2001) Granitoids and their susceptibility in South Korea. Resource Geol., v.51, p.189-203. https://doi.org/10.1111/j.1751-3928.2001.tb00091.x
  23. Kim, G.-S., Kim, J.-Y., Jung, K.K., Hwang, J.-Y. and Lee, J.-D. (1995) Rb-Sr whole rock geochronolgy of the granitic rocks in the Kyeongju-Gampo area, Kyeongsangbugdo, Korea. J. Korean Earth Science Society, v.16, p.272-279.
  24. Kim, S.J., Lee, H.K., Lee, C.H. and Itaya, T. (1999) K-Ar age and geochemistry of granitic rocks in the northeastern Gyeongsang Basin. Econ. Env. Geol., v.32, p.141-150.
  25. Kim, Y.-H., Kee, W.S. and Jin, G.M. (2010) Geological structures of Jecheon area, contact area between Ogcheon belt and Gyeonggi massif. Econ. Env. Geol., v.43, p.637-648.
  26. Koh, J.S. and Yun, S.H. (2003) The geochemistry of Yuksipryeong two mica leucogranite, Yeongnam Massif, Korea. J. Petrol. Soc. Korea, v.12, p.119-134.
  27. KORES (2005) Detailed Geological Survey Report (molybdenite: Pyeonghae area). Korea Resource Corporation, p.15-21.
  28. KORES (2006) Detailed geological survey report (molybdenite: Jaecheon area). Korea Resource Corporation, 100p.
  29. KORES (2010) Detailed Geological Survey Report (molybdenite: Yeonil area). Korea Resource Corporation, 59p.
  30. Lee, H.K., Yoo, B.C. and Kim, S.J. (1995) Au-Ag minerals and genetic environments from the Yeongdeog goldsilver deposits, Korea. Econ. Env. Geol., v.28, p.541- 551.
  31. Lee, H.K., Moon, H.S., Min, K.D., Kim, I.S., Yun, H. and Itaya, T. (1992) Paleomagnetism, stratigraphy and geological structure of the Tertiary Pohang and Changgi; K-Ar ages for volcanic rocks. Econ. Env. Geol., v.25, p.337-349.
  32. Lee, J. Y. and Lee, J. G. (1992) A geochemical study on trace elements of the Onjeong granite in relation to mineralization, Pyeonghae area. J. Kor. Min. Geol., v.25, p.245-258.
  33. Lee, S.G., Shin, S,C., Kim, K.H., Lee, T.J., Koh, H.J., Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon metamorphic belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101. https://doi.org/10.1016/j.gr.2009.04.012
  34. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M., (1997) Paleo- geographic maps of the Japanese islands. plate tectonic synthesis from 750 Ma to the present. Island Arc v.6, p.121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  35. Meinert, L. D. (1993) Skarns and skarn deposits. Geoscience Canada Reprint Series. v.6, p.117-134.
  36. Park, H.I., Chang, H.W. and Jin, M.S. (1988a) K-Ar ages of mineral deposits in the Taebaeg Mountain district. J. Korean Inst. Mining Geol., v.21, p.57-67.
  37. Park, H.I., Chang, H.W. and Jin, M.S. (1988b) K-Ar ages of mineral deposits in the Gyeonggi massif. J. Korean Inst. Mining Geol., v.21, p.349-358.
  38. Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jeong, S.H., and Park, J.N. (1973) The geology of the Hwanggangri mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, Geological and Mineral Institute Korea, 119p.
  39. Shibata, K., Park, N.Y., Uchiumi, S. and Ishihara, S. (1983) K-Ar ages of the Jecheon granitic complex and related molybdenite deposits, South Korea. Mining Geol., v.33, p.193-197.
  40. Shimazaki, H., Shibata, K., Uchiumi, S., Lee, M.S. and Kaneda, H. (1987) K-Ar ages of some W-Mo deposits and their bearing on metallogeny of South Korea. Mining Geol., v.37, p.395-401.
  41. Shin S. C. and Nishimura, C. (1993) Thermal and uplift histories of Mesozoic granites in southeast Korea: New fission track evidences. J. Petrol. Soc. Korea, v.2, p.104-121.
  42. So, C.S., Rye, D.M. and Shelton, K.L. (1983) Carbon, hydrogen, oxygen and sulfur isotope and fluid inclusion study of the Weolag tungsten-molybdenum deposit, Republic of Korea: Fluid histories of metamorphic and ore-forming events. Econ. Geol. v.78, p.1551-1573. https://doi.org/10.2113/gsecongeo.78.8.1551
  43. So, C.S., Shelton, K.L., Chi, S.J. and Yun, S.T. (1991) Geochemical studies of the Gyeongchang W-Mo mine, Republic of Korea: Progressive meteoric water inundation of a magmatic hydrothermal system. Econ. Geol., v.86, p.750-767. https://doi.org/10.2113/gsecongeo.86.4.750
  44. So, C.S. and Yun, S.T. (1994) Origin and evolutioin of WMo- producing fluids in a granitic hydorthermal system: Geochemical studies of quartz vein deposits around the Susan granite, Hwanggangri distirct, Republic of Korea. Econ. Geol., v.89, p.246-267. https://doi.org/10.2113/gsecongeo.89.2.246
  45. Turek, A. and Kim, C.-B. (1995) U-Pb zircon ages of Mesozoic plutions in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, v.29, p.243-258. https://doi.org/10.2343/geochemj.29.243