DOI QR코드

DOI QR Code

Determination of Flow Patterns for Multi-Phase Flow in Petroleum Production Systems

석유생산 시스템에서 다상유동의 패턴 결정

  • Lee, Kun-Sang (Department of Natural Resources and Environmental Engineering, Hanyang University) ;
  • Kim, Hyun-Tae (Petroleum and Marine Division, Korea Institute of Geoscience and Mineral Resources)
  • 이근상 (한양대학교 자원환경공학과) ;
  • 김현태 (한국지질자원연구원 석유해저연구부)
  • Received : 2010.10.22
  • Accepted : 2011.03.14
  • Published : 2011.04.28

Abstract

A comprehensive mechanistic model has been used to determine the flow pattern for gas-oil two-phase flow in pipes of petroleum production system. Depending on operational parameters, geometrical variables, and physical properties of the two phases, the two phases shows a specific flow patterns. For different parameters of the system, How pattern were compared for wide range of superficial velocities of oil and gas. In a variety of parameters, the inclinational angle and superficial velocities of oil and gas are the most dominant factors in determining the flow patterns for two-phase flow in pipelines. Other parameters such as pipe diameter and fluid properties have a limited effect on the change of flow patterns except for near transition. The mechanistic model is shown to be useful to determine the flow pattern in situations where either an experimental evaluation in a laboratory or reliable correlations are not available.

본 연구에서는 포괄적 역학모델을 이용하여 석유 생산 시스템의 파이프 내 가스-오일 2상유동에 대한 유동패턴을 결정하였다. 2상의 유체는 운영 인자, 기하학적 변수, 유체 물성 등에 따라 특정의 유동패턴을 나타냈다. 광범위한 기액 겉보기 속도에 대하여 시스템의 인자들을 변화시키면서 유동패턴을 비교하였다. 다양한 인자들 중 경사각과 겉보기 속도가 파이프 내 가스-오일 2상유동의 유용패턴을 결정하는데 가장 지배적인 인자로 나타났다. 파이프 직경, 유체 물성 등의 인자들은 전이 경계선 부근을 제외하면 유동패턴 변화에 제한적인 영향 만을 미쳤다. 역학모델은 실험실 평가나 신뢰성있는 상관식 이용이 불가능할 때 유동패턴을 결정할 수 있는 유용한 도구이다.

Keywords

References

  1. Barnea, D., Shoham, O. and Taitel, Y. (1982) Flow-pattern transition for downward inclined two-phase flow; horizontal to vertical, Chem. Eng. Sci., v.37, p.735-740. https://doi.org/10.1016/0009-2509(82)85033-1
  2. Barnea, D. (1986) Transition from annular flow and from dispersed-bubble flow-unified models for the whole range of pipe inclination, Int'l. Jour. Multiphase Flow, v.12, p.733-744. https://doi.org/10.1016/0301-9322(86)90048-0
  3. Brown, K. (1984) The technology of artificial lift methods, v.4, PennWell Books, Tulsa, OK, 447p.
  4. Hasan, A.R. and Kabir, C.S. (2002) Fluid flow and heat transfer in wellbores, Soc. Pet. Eng., Richardson, TX, 181p.
  5. Gomez, L.E., Shoham, O., Schmidt, Z., Chokshi, R.N., Brown, A. and Northug, T. (1999) A unified mechanistic model for steady-state two-phase flow in wellbores and pipelines, SPE 56520 paper presented at the 1999 SPE Annual Technical Conference and Exhibition, Houston, TX.
  6. Mandhane, J.M., Gregory, G.A., and Aziz, K. (1974) Flowpattern map for gas-liquid flow in horizontal pipes, Int'l. Jour. Multiphase Flow, v.1, p.537-554. https://doi.org/10.1016/0301-9322(74)90006-8
  7. Pereyra, E. and Torres, C. (2005) FLOPATN_Flow pattern prediction and plotting computer code, U. of Tulsa, Tulsa, OK.
  8. Petalas, N. and Aziz., K. (2000) A mechanistic model for multiphase flow in pipes, Jour. Cdn. Pet. Tech., v.39, p.43-55.
  9. Shoham, O. (2006) Mechanistic modeling of gas-liquid two-phase flow in pipes, Soc. Pet. Eng., Richardson, TX, 396p.
  10. Taitel, Y. and Dukler, A.E. (1976) A model for predicting flow regime transition in horizontal and near horizontal gas-liquid flow, AIChE Jour., v.22, p.47-55. https://doi.org/10.1002/aic.690220105
  11. Taitel, Y., Barnea, D., and Dukler, A.E. (1980) Modeling flow pattern transition for steady upward gas-liquid flow in vertical tubes, AIChE Jour., v.26, p.345-354. https://doi.org/10.1002/aic.690260304
  12. Xiao, J.J., Shoham, O. and Brill, J.P. (1990) A comprehensive mechanistic model for two-phase flow in pipelines, SPE 20631 paper presented at the 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA.