DOI QR코드

DOI QR Code

열처리에 따른 Diamond-like Carbon (DLC) 박막의 특성변화

Property Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature

  • Park, Ch.S. (Department of Materials Science and Engineering, Yonsei University) ;
  • Koo, K.H. (Sam Young Fil-Tech. LTD.) ;
  • Park, H.H. (Department of Materials Science and Engineering, Yonsei University)
  • 투고 : 2011.03.02
  • 심사 : 2011.03.24
  • 발행 : 2011.03.31

초록

Diamond-like carbon (DLC)은 $Sp^3$ 결합분율이 높은 준안정 상태의 비정질 탄소물질로 이루어진 박막이다. DLC는 기계적 특성, 화학적 특성, 윤활 특성뿐만 아니라 광학적, 전기적 특성 또한 우수한 물질이다. 본 연구에서는 DLC 박막을 그라파이트(graphite) 타깃을 출발 물질로 하여 고주파 마그네트론 스퍼터(RF magnetron sputter)로 $SiO_2$ 기판 상에 증착하였다. 증착된 DLC 박막은 후 열처리를 하였으며 열처리 온도에 따른 DLC 박막의 특성 변화를 관찰하였다. 열처리는 진공에서 급속가열법(rapid thermal process)으로 $300{\sim}500^{\circ}C$ 범위에서 시행하였다. 열처리된 DLC 박막은 전기적 특성 평가를 위하여 Hall 계수 측정기를 이용하여 상온 비저항을 측정하였으며 표면 변화를 확인하기 위하여 원자력 현미경(atomic force microscopy)을 이용하여 표면형상 변화를 관찰 하였다. 또한 표면특성, 비저항 특성 변화와 구조적 특성 변화와의 관계를 확인하기 위하여 X-선 광전자 분광법(X-ray photoelectron spectroscopy)과 라만 분광법을 이용하여 열처리에 따른 DLC 박막의 구조 변화를 관찰하였다.

Diamond-like carbon (DLC) films is a metastable form of amorphous carbon containing a significant fraction of Sp3 bond. DLC films have been characterized by a range of attractive mechanical, chemical, tribological, as well as optical and electrical properties. In this study DLC films were prepared by the RF magnetron sputter system on $SiO_2$ substrates using graphite target. The effects of the post annealing temperature on the Property variation of the DLC films were examined. The DLC films were annealed at temperatures ranging from 300 to $500^{\circ}C$ using rapid thermal process equipment in vacuum. The variation of electrical property and surface morphology as a function of annealing treatment was investigated by using a Hall Effect measurement and atomic force microscopy. Raman and X-ray photoelectron spectroscopy analyses revealed a structural change in the DLC films.

키워드

참고문헌

  1. J. Robertson, "Hard amorphous (diamond-like) carbons", Prog. Solid State Chem., 21(4), 199 (1991). https://doi.org/10.1016/0079-6786(91)90002-H
  2. P. Koidl, Ch. Wild, B. Dischler, J. Wagner and M. Ramsteiner, "Plasma Deposition, Properties and Structure of Amorphous Hydrogenated Carbon Films", Mater. Sci Forum, 52, 41 (1990).
  3. D. R. McKenzie, "Tetrahedral bonding in amorphous carbon", Rep. Prog. Phys., 59, 1611 (1996). https://doi.org/10.1088/0034-4885/59/12/002
  4. Y. Lifshitz, "Hydrogen-free amorphous carbon films: Correlation between growth conditions and properties", Diamond Rel. Mater., 5, 388 (1996). https://doi.org/10.1016/0925-9635(95)00445-9
  5. J. Robertson, "Diamond-like amorphous carbon", Mater. Sci. Eng., R37, 129 (2002).
  6. S. Adhikari, D.C. Ghimire, H.R. Aryal, G. Kalita and M. Umeno, "Effect of substrate bias voltage on the properties of diamond-like carbon thin films deposited by microwave surface wave plasma CVD", Diam. Relat. Mater., 17, 696 (2008). https://doi.org/10.1016/j.diamond.2007.10.006
  7. A. Sikora, O. Bourgeois, J.C. Sanchez-Lopez, J.-N. Rouzaud, T.C. Rojas, A.-S. Loir, J.-L. Garden, F. Garrelie and C. Donnet, "Effect of boron incorporation on the structure and electrical properties of diamond-like carbon films deposited by femtosecond and nanosecond pulsed laser ablation", Thin Solid Film., 518, 1470 (2009). https://doi.org/10.1016/j.tsf.2009.09.111
  8. F. Rossi, B. Andre, A. Van Veen, P. E. Mijnarends, H. Schut, F. Labohm, H. Dunlop, M. P. Delplancke and K. Hubbard, "Physical properties of a-C:N films produced by ion beam assisted deposition", J. Mater. Res., 9, 2440 (1994). https://doi.org/10.1557/JMR.1994.2440
  9. A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon", Phys. Rev. Lett., 15, 14095 (2000).
  10. B. K. Ju and Y. C. Kim, "Decrease of Gate Leakage Current by Employing Al Sacrificial Layer Deposited on a Tilted and Rotated Substrate in the DLC-coated Si-tip FEA Fabrication", J. Microelectron. Packag. Soc., 7(3), 27 (2000).
  11. K. C. Kim, Y. J. Kang, Y. S. Yu, J. G. Park, Y. M. Won and K. H. Oh "The Pad Recovery as a function of Diamond Shape on Diamond Disk for Metal CMP", J. Microelectron. Packag. Soc., 12(3), 47 (2006).
  12. N. Hellgren, M. P. Johansson, E. Broitman, P. Sandstrom, L. Hultman, and J. E. Sundgren, "Effect of chemical sputtering on the growth and structural evolution of magnetron sputtered $CN_x$ thin films", Thin Solid Films, 382, 146 (2001). https://doi.org/10.1016/S0040-6090(00)01690-4
  13. D. Briggs and M. P. Seah, "Practical surface analysis", 1, 119, John Wiley & Sons Ltd, Hoboken (1992).
  14. A. Y. Liu and M. L. Cohen, "Prediction of new low compressibility solids", Science, 245, 841 (1989). https://doi.org/10.1126/science.245.4920.841