DOI QR코드

DOI QR Code

Preparation and analysis of nickel-coated alumina by sonochemistry

음향화학법으로 니켈을 코팅한 알루미나의 제조 및 분석

  • 김진우 (계명대학교 자연대 화학과) ;
  • 최성우 (계명대학교 에너지환경과학과) ;
  • 이창섭 (계명대학교 자연대 화학과)
  • Received : 2008.09.10
  • Accepted : 2011.03.11
  • Published : 2011.04.25

Abstract

Ni-coated alumina was prepared by sonochemical method. To increase an efficiency of Ni coating on alumina, amorphous alumina was prepared by sol-gel method and Ni was coated to fine particles of alumina. Ni-coated alumina was prepared from various calcination temperatures ($500^{\circ}C$, $1,000^{\circ}C$), concentrations of Ni solution (0.01 M~0.2 M) and sonochemical reaction times (30 min, 2h). The prepared fine particles were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Particle Size Analyzer (PSA). The coating amount of Ni increased, as Ni concentration and ultrasonication time increased. The maximum amount of Ni was coated to fine particles of alumina, when Ni-coated alumina was prepared with 0.1 M concentration of Ni solution for 2 h of sonication time at $1000^{\circ}C$ of calcination temperature. The average particle size was in the range of 835.9 to 986.7 nm.

알루미나에 니켈을 코팅하는 효율을 높이기 위하여 졸-겔법을 이용하여 비결정성 알루미나를 제조한 후, 음향화학법을 이용하여 니켈을 알루미나에 코팅하여 미립자를 제조하였다. 니켈을 코팅한 알루미나 미립자는 여러 가지 소성온도($500^{\circ}C$, $1,000^{\circ}C$), 니켈용액의 농도(0.01 M~0.2 M), 초음파반응시간 (30 min, 2 h)의 조건에서 제조하였다. 제조한 미분체는 X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), Particle Size Analyzer (PSA)로 특성을 분석하였다. 니켈용액의 농도가 진해짐에 따라 그리고 초음파반응시간이 길수록 니켈의 코팅량이 증가하였다. 알루미나에 니켈을 코팅하는데 있어 $1000^{\circ}C$의 소성온도, 0.1 M의 니켈용액의 농도, 2시간의 초음파에 반응하였을 때 알루미나에 니켈이 가장 많이 코팅되었다. 그리고 평균입자의 크기는 835.9~986.7 nm였다.

Keywords

References

  1. S. C. Zhang and G. L. Messing, J. A. Ceram. Soc., 73(1), 61-66(1990). https://doi.org/10.1111/j.1151-2916.1990.tb05091.x
  2. D. W. Johnson, Jr., Am. Ceram. Soc. Bull., 1597, 12, 64(1985).
  3. K. S. Suslick and G. J. Price, Annu. Rev. Mater. Sci., 29, 295(1999). https://doi.org/10.1146/annurev.matsci.29.1.295
  4. H. Kawaoka, M. Hibino, H. Zhou and I. Honma, J. Powder Sources, 125, 85(2004). https://doi.org/10.1016/S0378-7753(03)00823-1
  5. Yusaf G. Adwuyi, Ind. Eng. Chem. Res., 40, 4681(2001). https://doi.org/10.1021/ie010096l
  6. J. I. Dornann, C. Djega-Mariadasson and J. J. Jave, J. Magn. Magn. Mater., 12, 104(1992).
  7. C. Djega-Mriadasson, J. I. Dormann, M. Nogues, G. Viller and S. Sayouri, IEEE Trans. Magn., 18, 26(1990).
  8. S. Ramesh, R. Prozorov and A. Gedanken, Chem. Mater., 9, 29(1997).
  9. S. Ramesh,, Y. Koltypin, R. Prozorov and A. Gedanken, Chem. Mater., 5, 9(1997).
  10. K. S. Suslick. S. B. Choe, A. A. Cichowlas and M. W. Grinsataff, Nature, 353(1991).
  11. J. Lu, L. Gao, L. Gui and J. Guo, Materials Chemistry and Physics, 72, 352-355(2001). https://doi.org/10.1016/S0254-0584(01)00336-4

Cited by

  1. Ultrasonochemical coating and characterization of TiO2-coated zirconia fine particles vol.20, pp.4, 2014, https://doi.org/10.1016/j.jiec.2013.08.036