Fluorescence of Tongue Coat - Mechanism of Tongue Coat Fluorescence and Suggestions on Development of Digital Tongue Diagnosis System -

설태의 형광특성 - 설태 형광현상의 발현기전 소개 및 제안 -

  • Kim, Ji-Hye (Depart. of Biofunctional Medicine & Diagnostics, College of Oriental Medicine, Sangji University) ;
  • Nam, Dong-Hyun (Depart. of Biofunctional Medicine & Diagnostics, College of Oriental Medicine, Sangji University)
  • 김지혜 (상지대학교 한의과대학 진단.생기능의학교실) ;
  • 남동현 (상지대학교 한의과대학 진단.생기능의학교실)
  • Received : 2011.03.16
  • Accepted : 2011.04.11
  • Published : 2011.04.30

Abstract

In traditional Korean medicine, inspection of the tongue is an important method of making medical diagnoses and determining prognosis. We surveyed the fluorescence characteristics of the tongue coat in the ultraviolet light. The tongue coat comprises micro-organisms, blood metabolites, leukocytes from periodontal pockets, large amounts of desquamated epithelial cells released from the oral mucosa and different nutrients. In the ultraviolet light tissues of the oral cavity generally emit weak red or green fluorescence, which is not easily seen by the human eye, but is readily detected. This fluorescence has been proved to be due to the production of porphyrins by oral micro-organisms. While the composition of motile micro-organisms on the dorsum of the tongue is not constant, variations also occur persistingly in the fluorescence characteristics of the tongue coat. But because live bacteria contain a variety of intracellular biomolecules that have specific excitation and emission wavelength spectra characterizing their intrinsic fluorescence, the tongue coat emits fluorescence. the tongue itself, on the other hand, emits very weak or not fluorescence. In conclusion, we suggests that the uncoated tongue area be eliminated from the coated tongue area with the difference between the fluorescence characteristics of the tongue and that of the tongue coat.

Acknowledgement

Supported by : 상지대학교

References

  1. 이봉교, 박영배, 김태희. 한방진단학. 서울, 성보사, 1992, 70-72.
  2. 김보연, 박경모. 디지털 설진 획득 및 관리 시스템의 개발. 대한한의진단학회지. 2002; 6: 65-78.
  3. 김근호, 유현희, 김종열. 디지털 자동 설진 시스템 구축을 위한 설태 인식 알고리즘 기초 연구. 동의생리병리학회지. 2009; 23: 97-103.
  4. Pang B, Zhang D, Wang K. The bi-elliptical deformable contour and its application to automated tongue segmentation in Chinese medicine. IEEE Trans Med Imaging. 2005; 24: 946-956. https://doi.org/10.1109/TMI.2005.850552
  5. Yamamoto S, Tsumura N, Nakaguchi T, Namiki T, Kasahara Y, Terasawa K, Miyake Y. Regional image analysis of the tongue color spectrum. Int J Comput Assist Radiol Surg. 2011; 6: 143-152. https://doi.org/10.1007/s11548-010-0492-x
  6. Yamamoto S, Tsumura N, Nakaguchi T, Namiki T, Kasahara Y, Ogawa-Ochiai K, Terasawa K, Miyake Y. Principal component vector rotation of the tongue color spectrum to predict "Mibyou" (disease-oriented state). Int J Comput Assist Radiol Surg. 2011; 6: 209-215.
  7. Kim J, Jung Y, Park K, Park JW. A digital tongue imaging system for tongue coating evaluation in patients with oral malodour. Oral Dis. 2009; 15: 565-569. https://doi.org/10.1111/j.1601-0825.2009.01592.x
  8. Sarrazin JJ. Tongue cleansing. Dent Pract Dent Rec. 1920; 30: 599.
  9. De Boever EH, Loesche WJ. Assessing the contribution of anaerobic microflora of the tongue to oral malodor. J Am Dent Assoc. 1995; 126: 1384-1393. https://doi.org/10.14219/jada.archive.1995.0049
  10. Quirynen M, Mongardini C, Van Steenberghe D. The effect of a 1-stage full-mouth disinfection on oral malodor and microbial colonization of the tongue in periodontitis patients. A pilot study. J Periodontol. 1998; 69: 374-382. https://doi.org/10.1902/jop.1998.69.3.374
  11. Mantilla Go'mez S, Danser MM, Sipos PM, Rowshanu B, Van der Velden U, Van der Weijden GA. Tongue coating and salivary bacterial counts in healthy/gingivitis subjects and periodontitis patients. J Clin Periodontol. 2001; 28: 970-977. https://doi.org/10.1034/j.1600-051x.2001.028010970.x
  12. Wolffe GN, Van der Velden U. Reproducibility of phase-contrast microscope measurements of percentage motile microorganisms in samples removed from the dorsum of the tongue. J Periodontal Res. 1987; 22: 366-369. https://doi.org/10.1111/j.1600-0765.1987.tb01600.x
  13. Van der Weijden GA, Van der Velden U. Fluctuation of the microbiota of the tongue in humans. J Clin Periodontol. 1991; 18: 26-29. https://doi.org/10.1111/j.1600-051X.1991.tb01115.x
  14. Danser MM, Gomez SM, Van der Weijden GA. Tongue coating and tongue brushing: a literature review. Int J Dent Hyg. 2003; 1: 151-158. https://doi.org/10.1034/j.1601-5037.2003.00034.x
  15. Chen ZL, Hu QF. Recent development in research on tongue inspection. Chin Med J (Engl). 1986; 99: 444-456.
  16. Ralph WJ. Oral hygiene - why neglect the tongue? Aust Dent J. 1988; 33: 224-225. https://doi.org/10.1111/j.1834-7819.1988.tb01318.x
  17. Yaegaki K, Sanada K. Volatile sulfur compounds in mouth air from clinically healthy subjects and patients with periodontal disease. J Periodont Res. 1992; 27: 233-238. https://doi.org/10.1111/j.1600-0765.1992.tb01673.x
  18. Fiorotti RC, Nicola JH, Nicola EM. Native fluorescence of oral cavity structures: an experimental study in dogs. Photomed Laser Surg. 2006; 24: 22-28. https://doi.org/10.1089/pho.2006.24.22
  19. Tomaszewski W. The fluorescence phenomenon of the tongue. Br Med J. 1951; 1: 117-120. https://doi.org/10.1136/bmj.1.4698.117
  20. Buchalla W. Comparative fluorescence spectroscopy shows differences in noncavitated enamel lesions. Caries Res. 2005; 39(2): 150-156. https://doi.org/10.1159/000083162
  21. Buchalla W, Lennon AM, Attin T. Comparative fluorescence spectroscopy of root caries lesions. Eur J Oral Sci. 2004; 112: 490-496. https://doi.org/10.1111/j.1600-0722.2004.00173.x
  22. Ribeiro A, Rousseau C, Girkin J, Hall A, Strang R, John Whitters C, Creanor S, Gomes AS. A preliminary investigation of a spectroscopic technique for the diagnosis of natural caries lesions. J Dent. 2005; 33: 73-78. https://doi.org/10.1016/j.jdent.2004.08.006
  23. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002; 148: 257-266. https://doi.org/10.1099/00221287-148-1-257
  24. Martin FE, Nadkarni MA, Jacques NA, Hunter N. Quantitative microbiological study of human carious dentine by culture and real-time PCR: association of anaerobes with histopathological changes in chronic pulpitis. J Clin Microbiol. 2002; 40: 1698-1704. https://doi.org/10.1128/JCM.40.5.1698-1704.2002
  25. Lennon AM, Buchalla W, Brune L, Zimmermann O, Gross U, Attin T. The ability of selected oral microorganisms to emit red fluorescence. Caries Res. 2006; 40: 2-5. https://doi.org/10.1159/000088898
  26. Thomas RZ, van der Mei HC, van der Veen MH, de Soet JJ, Huysmans MC. Bacterial com position and red fluorescence of plaque in relation to primary and secondary caries next to composite: an in situ study. Oral Microbiol Immunol. 2008; 23: 7-13.
  27. Ammor MS. Recent advances in the use of intrinsic fluorescence for bacterial identification and characterization. J Fluoresc. 2007; 17: 455-459. https://doi.org/10.1007/s10895-007-0180-6
  28. Creed D. The photophysics and photochemistry of the near-UV absorbing amino acids-III. Cystine and its simple derivatives. Photochem Photobiol. 1984; 39: 577-583.
  29. Hendrik FH, James OJ, Kate KO, Alan CS, Constantine PV. Fluorescence of cysteine and cystine. J Phys Chem A. 1998; 102: 361-367. https://doi.org/10.1021/jp971631r
  30. Schaffer AB, Sachs SW. Observations on the fluorescent tongue pattern and its relation to the deficiency state. Oral Surg Oral Med Oral Pathol. 1953; 6: 1425-1434. https://doi.org/10.1016/0030-4220(53)90241-2