치아 계면 층 DEJ(Dental Enamel Junction)의 파괴 거동에 관한 수치해석적 연구

A Study on the Fracture Behavior of Tooth Interfacial Layer, DEJ (Dental Enamel Junction)

  • 투고 : 2011.05.09
  • 심사 : 2011.05.20
  • 발행 : 2011.06.15

초록

Numerical experiments on biological interfacial layer, DEJ by finite element software ABAQUS have been conducted to study its fracture behavior including crack bridging / arresting characteristics in the model. Crack growth simulation has been carried out by numerical tool, XFEM, devoted to study cracks and discontinuities. The fracture toughness of DEJ has been estimated before and after crack bridging. The implications of bridging in numerical study of fracture behavior of DEJ-like biological interface have been discussed. It has been observed that the results provided by the numerical studies without proper accommodation of bridging phenomenon can mislead. This study can be helpful for understanding the DEJ-like biological interface in terms of its fracture toughness, an important material characteristics. This property of the material is an important measure that has to be taken care during design and manufacturing processes.

키워드

참고문헌

  1. Marshall, G. W. Jr., Balooch, M., Gallagher, R. R., Gansky, S. A., and Marshall, S. J., 2001, "Mechanical Properties of the Dentinoenamel Junction: AFM Studies of Nanohardness, Elastic Modulus and Fracture," Journal of Biomedical Materials Research, Vol. 54, No. 1, pp. 87-95. https://doi.org/10.1002/1097-4636(200101)54:1<87::AID-JBM10>3.0.CO;2-Z
  2. Marshall, S. J., Balooch, M., Habelitz, S., Balooch, G., Gallagher, R., and Marshall, G. W., 2003, "The Dentine Enamel Junction: A Natural Multilevel Interface," Journal of European Ceramic Society, Vol. 23, pp. 2897-2904. https://doi.org/10.1016/S0955-2219(03)00301-7
  3. White, S. N., Paine, M. L., Luo, W., Sharikya, M., Fong, H., Yu, Z., Li, Z. C., and Snead, M. L., 2000, "The Dentino-enamel Junction is a Broad Transitional Zone Uniting Dissimilar Bioceramic Composites," Journal of American Ceramic Society, Vol. 83, No.1, pp. 238-240. https://doi.org/10.1111/j.1151-2916.2000.tb01181.x
  4. White, S. N., Miklus, V. G., Caputo, A. A., Hong, H., Sarikya, M., Luo, W., Paine, M. L., and Snead, M. L., 2005, "Controlled Failure Mechanisms Toughen the Dentino-enamel Junction Zone," The Journal of Prosthetic Dentistry, Vol. 94, No. 4, pp. 330-335. https://doi.org/10.1016/j.prosdent.2005.08.013
  5. Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J., and Ritchie, R. O., 2005, "The Dentine-enamel Junction and Fracture of Human Teeth," Letters, Nature Materials, Vol. 4, pp. 229-232. https://doi.org/10.1038/nmat1323
  6. Chan, Y. L., Ngan, A. H. W., and King, N. M., 2011, "Nano Scale Structure and Mechanical Properties of the Human Dentine Enamel Junction," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp. 785-795. https://doi.org/10.1016/j.jmbbm.2010.09.003
  7. Fong, H., Sarikya, M., White, S. N., and Snead, M. L., 2000, "Nano-mechanical Properties Profiles Across Dentine Enamel Junction of Human Incisor Teeth," Material Science and Engineering C, Vol. 7, No.2, pp 119-128. https://doi.org/10.1016/S0928-4931(99)00133-2
  8. Tesch, W., Eidelman, N., Roschger, P., Goldenberg, F., Klaushofer, K., and Fratzl, P., 2001, "Graded Microstructure and Mechanical Properties of Human Crown Dentine," Classified Tissue International, Vol. 69, No. 3, pp. 147-157. https://doi.org/10.1007/s00223-001-2012-z
  9. Whittaker, D. K., 1978, "The Enamel-dentine Junction and Macaca Irus Teeth: A Light and Electron Microscopic Study," Journal of Anatomy, Vol. 122, No. 2, pp. 323-335.
  10. Habelitz, S., Marshall, S. J., Marshall, G. W. Jr., and Balooch, M., 2001, "The Functional Width of the Dentino-Enamel Junction Determined by AFM-based Nanoscratching," Journal of Structural Biology, Vol. 135, No. 3, pp. 294-301. https://doi.org/10.1006/jsbi.2001.4409
  11. Rasmussen, S. T., 1984, "Fracture Properties of Human Teeth in Proximity to the Dentino-enamel Junction," Journal of Dental Research, Vol. 63, No. 11, pp. 1279-1283. https://doi.org/10.1177/00220345840630110501
  12. Lin, C. P., and Douglas, W. H., 1994, "Structure Property Relations and Crack Resistance at the Bovine Dentine-Enamel Junction," Journal of Dental Research, Vol. 73, No. 5, pp. 1072-1078.
  13. Dong, X. D., and Ruse, N. D., 2003, "Fatigue Crack Propagation Path Across the Dentino-enamel Junction Complex in Human Teeth," Journal of Biomedical Materials Research Part A, Vol. 66A, No. 1, pp. 103-109. https://doi.org/10.1002/jbm.a.10541
  14. Bechtle, S., Fett, T., Rizzi, G., Habelitz, S., Klocke, A., and Schneider, G. A., 2010, "Crack Arrest Within Teeth at the Dentinoenamel Junction Caused by Elastic Modulus Mismatch," Biomaterials, Vol. 31, No. 14, pp. 4238-4247. https://doi.org/10.1016/j.biomaterials.2010.01.127
  15. Bechtle, S., Habelitz, S., Klocke, A., Fett, T., and Schneider, G. A., 2010, "The Fracture Behavior of Dental Enamel," Biomaterials, Vol. 31, No. 2, pp. 375-384. https://doi.org/10.1016/j.biomaterials.2009.09.050
  16. Melenk, J. M., and Babuska, I., 1996, "The Partition of Unity Finite Element Method: Basic Theory and Applications," Computer Methods in Applied Mechanical Engineering, Vol. 139, No. 1-4, pp. 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  17. Belytschko, T., and Black, T., 1999, "Elastic Crack Growth in Finite Elements with Minimal Remeshing," International Journal of Numerical Methods in Engineering, Vol. 45, No. 5, pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  18. Sukumar, N., Moess, N., Belytschko, T., and Moran, B., 2000, "Extended Finite Element Method for Three Dimensional Crack Modeling," International Journal of Numerical Methods in Engineering, Vol. 48, No. 11, pp. 1549-1570. https://doi.org/10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
  19. Jirasek, M., 2000, "Comparative Study on Finite Elements with Embedded Discontinuities," Computer Methods in Applied Mechanical Engineering, Vol. 188, No. 1, pp. 307-330. https://doi.org/10.1016/S0045-7825(99)00154-1
  20. Stolarska, M., Chopp, D. H., Moess, N., and Belytschko, T., 2001, "Modeling Crack Growth by Level Sets in the Extended Finite Element Method," International Journal of Numerical Methods in Engineering, Vol. 51, No. 8, pp. 943-960. https://doi.org/10.1002/nme.201
  21. Ventura, T., Budyn, E., and Belytschko, T., 2003, "Vector Level Sets for Description of the Propagating Cracks in Finite Elements," International Journal for Numerical Methods in Engineering, Vol. 58, No. 10, pp. 1571-1592. https://doi.org/10.1002/nme.829
  22. Liu, X. Y., Xiao, Q. Z., and Karihaloo, B. L., 2004, "XFEM for Direct Evaluation of Mixed Modes SIFs in Homogeneous and Bi-materials," International Journal of Numerical Methods in Engineering, Vol. 59, No. 8, pp. 1103-1118. https://doi.org/10.1002/nme.906
  23. Shibanuma, K., and Utsunomiya, T., 2011, "Evaluation on Reproduction of Priori Knowledge in XFEM," Finite Elements in Analysis and Design, Vol. 47, No. 4, pp. 424-433. https://doi.org/10.1016/j.finel.2010.11.007
  24. Bao, G., and Suo, Z., 1992, "Remarks on Crack-bridging Concepts," Applied Mechanics Review, Vol. 45, No. 8, pp. 355-365. https://doi.org/10.1115/1.3119764
  25. Niu, X., Rahbar, N., Farias, S., and Soboyejo, W., 2009, "Bio-inspired Design of Dental Multilayers: Experiments and Model," Journal of the Mechanical Behavior of Biomedical Materials, Vol. 2, No. 6, pp. 596-602. https://doi.org/10.1016/j.jmbbm.2008.10.009
  26. Huang, M., Rahbar, N., Thompson, V., Rekow, D., and Soboyejo, W. O., 2007, "Bioinspired Design of Dental Multilayers," Materials Science and Engineering A, Vol. 464, No. 1-2, pp. 315-320. https://doi.org/10.1016/j.msea.2007.02.058
  27. Huang, M., Niu, X., Shrotriya, P., Thompson, V., Rekow, D., and Soboyejo, W. O., 2005, "Contact Damage of Dental Multilayers: Viscous Deformation and Fatigue Mechanisms," Journal of Material Science and Technology, Vol. 127, No. 1, pp. 33-39. https://doi.org/10.1115/1.1836769
  28. Bechtle, S., Ang, S. F., and Schneider, G. A., 2010, "On the Mechanical Properties of Hierarchically Structured Biological Materials," Biomaterials, Vol. 31, No. 25, pp. 6378-6385. https://doi.org/10.1016/j.biomaterials.2010.05.044
  29. Dassault Systemes, 2007, viewed 10, April, "ABAQUS Manual V. 6.9," ABAQUS Manual,
  30. Luchi, M. L., and Rizzuti, S., 1987, "Boundary Elements for Three Dimensional Crack Analysis," International Journal of Numerical Methods in Engineering, Vol. 24, No. 12, pp. 2253-2271. https://doi.org/10.1002/nme.1620241203
  31. Stephen, M. G., and Mark, A. L., 2008, Self-healing Dental Composites and Related Methods, US Patent: 20080300340