요 약

지난 수 십 년간 통신 기술의 발전과 웹 서비스의 범위는 인터넷 사용자의 수와 폭발적인 증가와 화상회의, 가상 중합 현상, 인터넷 게임 등 실시간 멀티미디어 멀티캐스트 서비스의 급격한 증가를 초래했다. 고밀도 파장분할다중화기술에 기반한 DWDM(Dense-WaveLENGTH Division Multiplexing) 기술은 인터넷 사용자의 증가와 그에 따른 대역폭 요구를 수용하기 위한 방안으로 국가나 글로벌 영역 범위의 차세대 인터넷망 구현을 위한 백분법 기술로 여겨지며, 이러한 DWDM 전달망에서는 멀티캐스트 연결 요구에 대해 최적의 경로를 선택하고 선택된 경로에 효율적으로 파장을 할당하는 멀티캐스트 RWA(Routing and Wavelength Assignment) 문제가 파장 대역폭의 효율적인 활용 측면에서 매우 중요하게 다루어지고 있다. 주어진 파장 수 환경에서 최대한 많은 수의 멀티캐스트 연결을 달성하는 문제는 일반적으로 Non-deterministic Polynomial-time-complete 문제로 여겨지는 데, 본 논문에서는 가상소스를 기반으로 노드의 능력에 따른 차동화로 우선 순위를 적용하여 흐름스틱하게 멀티캐스트 라우팅 경로를 효율적으로 선정하는 DVSP-MPIMMR (Differentiated Virtual Source-based Priority Minimum Interference Path Multicast Routing) 알고리즘을 제안한다. 마지막으로 같은 조건에서 더 많은 수의 멀티캐스트 라우팅 패스의 연결이 가능함을 시뮬레이션 및 성능분석으로 증명한다.

A Study on Virtual Source-based Differentiated Multicast Routing and Wavelength Assignment Algorithms in the Next Generation Optical Internet based on DWDM Technology

Sungun Kim*, Seonyeong Park**

ABSTRACT

Over the past decade, the improvement of communications technologies and the rapid spread of WWW (World Wide Web) have brought on the exponential growth of users using Internet and real time multimedia multicast services like video conferencing, tele-immersive virtual reality, and Internet games. The dense-wavelength division multiplexing (DWDM) networks have been widely accepted as a promising approach to meet the ever-increasing bandwidth demands of Internet users, especially in next generation Internet backbone networks for nation-wide or global coverage. A major challenge in the next generation Internet backbone networks based on DWDM technologies is the resolution of the
multicasting RWA (Routing and Wavelength Assignment) problem: given a set of wavelengths in the DWDM network, we set up light-paths by routing and assigning a wavelength for each connection so that the multicast connections are set-upped as many as possible. Finding such optimal multicast connections has been proven to be Non-deterministic Polynomial-time-complete. In this paper, we suggest a new heuristic multicast routing and wavelength assignment method for multicast sessions called DVS-PMIPMR (Differentiated Virtual Source-based Priority Minimum Interference Path Multicast Routing algorithm). We measured the performance of the proposed algorithm in terms of number of wavelength and wavelength channel. The simulation results demonstrate that DVS-PMIPMR algorithm is superior to previous multicast routing algorithms.

Key words: DWDM(고밀도 파장분할다중화), RWA(라우팅 및 파장 할당), Multicast Routing(멀티캐스트 라우팅), Wavelength Conversion(파장 변환), VS Node(가상소스 노드), Optical Internet(광 인터넷)

1. 서 론

IP기반의 인터넷 기술과 광 네트워크 기술이 발달함에 따라 IP/DWDM(IP/Dense-Wavelength Division Multiplexing) 기술이 차세대 광 인터넷을 위한 백본 맵 개념으로 널리 적용되고 있다[1]. 가까운 미래에 요구되는 하이파 광대역 서비스는 모바일 전화 기에서 디지털 TV를 시청 할 수 있는 품질의 서비스들로 예상되고 있다. 이와 같이 하이퍼서비스는 하이퍼 광대역 서비스, 원격회의 및 협업, 원격 진료, 원격교육, 사물정보통신, 스마트 그리드 서비스, IP-UNSN 서비스, IPTV, VoIP(Voice over IP) 등으로 분류할 수 있는데 대부분의 서비스가 DWDM 전달망을 거쳐 멀티캐스트 서비스를 통한 방송이다.

위에서 언급한 여러 기술들은 그림 1과 같이 IP 기반의 콜질 맵 기술과 DWDM 백본 맵을 통한 구조로, IP 기반 서비스 제공자가 채널 맵 기반에서 게이트웨이 노드 및 DWDM 전달망의 가상소스 노드를 거쳐 상대방 가상소스 노드 및 게이트웨이를 거쳐 상대방 사용자로 연결되어 멀티캐스트 서비스는 구조이다.

![그림 1. DWDM 기반 하이퍼 광대역 서비스를 위한 멀티캐스트 RWA 개념](image)

일반적으로 DWDM망에서 멀티캐스트 RWA (Routing and Wavelength Assignment) 문제는 송수신 노드 간의 멀티캐스트 광 경로 설정 요구에 따라 최적의 경로를 설정하고, 선택된 해당 경로에 효율적으로 파장을 할당하는 문제를 말한다. DWDM 망에서는 파이버 망 여러 개의 파장을 활용하는데, 한 파장당 수십 Gbps 이상의 데이터 전송이 제공되므로, 망 대역폭의 효율적인 사용 측면에서 RWA 문제는 매우 중요한 고려 사항이라 할 수 있다[2-5]. 즉, 제한된 자원의 상황에서 광 경로 수의 셋업 쿼드 와 광 경로 셋업 요구에 따른 브로드캐스트 최소화를 효율적인 라우팅 및 최적의 경로 할당으로 문제 해결을 함으로써 효과적인 DWDM 망 사용에 대해 고려되어야 한다[1].

주어진 경로 수 환경에서 최대한 많은 수의 멀티 캐스트 연결을 달성하는 문제는 일반적으로 Non-deterministic Polynomial-time-complete 문제로 여겨지는데 해결하기가 쉽지 않다[6].

본 논문의 저자들은 데이터의 중복 전송으로 인한 네트워크의 대역폭의 낭비 방지 및 네트워크 사용 효율의 극대화를 위해 멀티캐스트 기반에서 2가지 RWA 방법을 제안하였다[7,8].

기존에 제안된 RWA 방식 중 VS(가상소스: Virtual Source)-rooted 접근 방식은 자원을 효율적으로 활용하고 광 경로 구성 시 지연시간이 적다는 장점이 있지만, 미래의 잠재적인 서비스 요구에 대해서는 고려를 하지 않는다는 한계점을 보인다[9]. 따라서 이를 해결하기 위해 제안된 VS-MIPMR (Virtual Source-based Minimum Interference Path Multicast Routing) 방식은 VS-rooted 트리 형성 방식을 이용하여 광 경로 구성 시, 간섭이 일어날 가능
성이 높은 VS 노드 사이의 간섭을 최소화하는 알고리즘을 적용함으로써, 미래의 잠재적인 연결 요구에 대해 간섭을 최소화하는 광 경로를 구성한다[7]. 그러나 이러한 방식의 RWA방식은 차동화된 능력을 가지고 있는 각 노드에 대해 고려하지 않아, 파장 채널 사용 측면에 있어 효율성이 멀어지는 단점이 있다.

또한 Source-rooted 접근 방식 기반으로 제안된 PMIPMR(Priority Minimum Interference Path Multicast Routing) 방식은 각 노드의 능력을 차등화하여 경로 설정 시 노드의 우선순위에 기반하고, 미래의 잠재적 서비스에 대한 간섭의 최소화까지 고려한 알고리즘이다[8]. 그러나 이 방법은 소스 노드 기반으로는 최적 경로를 찾기 위한 지연시간이 길고, 소스를 근간으로 멀티캐스트 트리 형성하기 위해 계산해야 할 오버헤드가 커지기 때문에 다단계가 있다. 또한 VS 노드가 적절한 경로에 위치해야만 분배기의 역할을 할 수 있기 때문에 필요할 직원의 난비를 초래하는 문제점을 가지고 있다[10].

본 연구에서는 VS-rooted 접근 방식을 기반으로 하여 노드 배치의 복잡성을 줄이고, 기존의 PMIPMR 알고리즘을 활용하여 각 노드들 광 파장 분할 및 변환 기능을 갖는 VS노드와 광파장 분할 기능을 하는 분할 노드, 분할 및 변환 기능이 없는 Dac(Discount and Continue) 노드로 구분한다. 그리고 각 노드가 제공하는 기능(분할, 변환 등)에 따라 우선 순위를 부여하여 올 수가 같은 노드가 여러 개 존재할 경우, 노드 선택 시 우선순위를 고려하여 경로를 설정한다. 또한 미래의 잠재적인 서비스 요청에 대한 간섭을 최소화함으로써 최적 비용의 광 자원으로 최대의 광 경로를 제공하는 DWDM 기반 최적의 멀티캐스트 라우팅 및 파장 할당 알고리즘을 제안한다.

본 논문의 2장에서는 DWDM망에서 기존의 멀티 캐스트 RWA 연구내용을 분석하고, 3장에서는 개선된 가상초소스를 기반으로 노드의 능력에 따른 차등화로 우선 순위를 적용하여 효율적으로 멀티캐스트 라우팅 경로를 효율적으로 선정하는 DVS-PMIPMR(Differentiated Virtual Source-based Priority Minimum Interference Path Multicast Routing) 알고리즘을 제안한다. 4장에서는 제안된 알고리즘의 성능 평가와 마지막으로 본 논문의 5장에서는 본 연구에 대한 결론을 빚는다.

2. DWDM 망에서의 기존 멀티캐스트 RWA 연구

2.1 멀티캐스트 RWA 정의

송수신 노드 간의 광 경로 설정 요구에 대해 최적의 경로 설정 및 선택된 경로에 대한 효율적 파장 할당에 해당하는 RWA 문제의 해결을 위해, 제한된 자원의 상황에서 광 경로 수의 세팅 최대화 및 광경로 세팅 요구에 따른 불로킹 확률 최소화를 통해 DWDM 망을 효과적으로 사용하는 것이 필수적이다.

이와 같은 RWA 연구는 트래픽 특성 및 노드의 파장 변환 기능 유무에 따라 여러 관점으로 접근되고 있으나, 현실적으로 라우팅과 파장 할당을 복잡함으로 고려하여 최적의 방안을 찾아야 하는데에는 어려움이 따른다[1,5]. 또한 두 정책을 복합적으로 고려할 경우, 하나의 요소에 대한 최적의 방안이 다른 요소의 성능을 저하시키는 양상성을 가진다[11].

그림 2에서와 같이 DWDM 기반의 RWA 접근 방식은 크게 1:1 전송 형태의 유니캐스트 방식, 1:All의 전송 형태의 브로드캐스트 방식, 그리고 1:N 또는 M:N의 전송 형태인 멀티캐스트 방식으로 구분된다[12].

먼저 유니캐스트 RWA 방식은 전송하고자 하는 정보가 동일하더라도 송수신자 간의 각각 개별적인 연결을 설정하는 방식이며, 브로드캐스트 RWA 방식은 하나의 송신자가 네트워크의 모든 수신자에게 데이터를 전송하는 방식이다. 다음으로 멀티캐스트 RWA 방식은 소스 노드의 정보를 여러 목적지 노드의 집합에 전달하는 전송 방식으로, DWDM 망에서는 멀티캐스트 지원을 위해 소스 노드를 근간으로 모든 목적지 노드를 포함하는 광 트리 구성이 살펴본다.

그림 2. 기존에 연구된 라우팅 문제 해결 방법
그림 2와 같이 다양한 멀티캐스트 RWA 알고리즘들이 존재한다.

본 논문은 IPTV, 화상회의, 가상 증강 현실, 인터넷 게임 등 실시간 멀티미디어 멀티캐스트 서비스의 균질한 증가에 따른 멀티캐스트 RWA 문제에 대한 것으로, 주어진 과장 수 환경에서 최대한 많은 수의 멀티캐스트 연결을 달성하는 문제를 좀 더 효과적인 방법으로 해결하는 방법을 제안한다. 기존 연구 결과들을 분석해보면, 멀티캐스트 RWA 문제는 과장함당 기법보다 라우팅 방식의 선택에서 큰 성능 차이를 보이며, 본 연구에서는 과장 함당 방식으로 FF (First-Fit)방법을 사용하고, 이에 대한 효율적인 라우팅 방법을 제안한다[13].

2.1 기존 멀티캐스트 RWA 연구

그림 3과 같이 VS-MIPMR 알고리즘은 VS 노드 간의 최소 송수신 경로 세그먼트 S1이 결정되었을 때, 미래에 연결 설정을 원하는 다른 광 트리 생성을 또한 목적지 노드에 따라 VS 노드 사이의 S1을 경유하면서
위해 세 가지 세그먼트 중 가장 높은 노드 우선순위가 가장 적은 종으로 가는 하나의 시나리오 S로 선택된다. 두 번째 멀티캐스트 세션 요청도 같은 이유로 S로 허용한다. 그러나 방상황에 따라 세 번째 멀티캐스트 세션 요청에 대해 높은 우선순위와 최소 홀 수를 가지는 S의 선택은 트레픽 집중을 가져오고, 이로 인해 차단 확률을 증가시킨다. 그러므로 비록 S가 S보다 홀 수가 많더라도, S보다 노드 우선순위가 높으면서 미래의 다른 멀티캐스트 세션 요청에 대한 최소의 간섭을 받는 S를 이용하는 것이 더 효율적이다. 즉, PMIPMR 알고리즘은 미래의 잠재적 서비스 요청에 대한 간섭의 최소화뿐만 아니라, 노드의 우선순위를 고려하여 가용 공간에 있어 효율적인 장애가 있다. 하지만 이 방법은 Source-rooted 기반으로부터 환경을 찾기 위한 자연스러운 접근으로서, 소스를 근간으로 멀티캐스트 트리 형성을 위해 계산해야 할 오버헤드가 많으며, VS 노드가 적절한 경로에 위치해야만 병가기의 역할을 할 수 있다는 단점으로 인해 불편한 자원의 낭비를 초래하는 문제점이 존재한다[8].

3. 새로운 개념의 멀티캐스트 RWA 알고리즘

3.1 DVS-PMIPMR 정의

차세대 DWDM 기반의 광 인터넷 망에서 대량의 멀티미디어 트레이픽을 효율적으로 전송하기 위해, 기존의 멀티캐스트 RWA 연구에서 VS-rooted 접근 방식과 Source-rooted 접근 방식을 확장한 WS-MIPMR 알고리즘 및 PMIPMR 알고리즘이 제안되었다.

그러나 VS-rooted 접근 방식을 기반으로 한 VS-MIPMR 알고리즘의 경우, 각 노드의 능력을 전혀 고려하지 않고, 요구되는 능력에 상관없이 사용되는 모든 VS 노드가 100%의 과장 변경률을 가지며, 각 장 서브 트리에 대한 비트워크의 트레픽 집중 문제도 고려되지 않아 비용 면에서 매우 비효율적이다.

또한 PMIPMR 알고리즘의 경우, Source-rooted 접근 방식을 기반으로 하기 때문에 자연스럽고, 오버헤드 등의 문제가 여전히 존재한다.

따라서 이를 개선하기 위해 과장 변경률에 따라 차등화된 능력을 가지는 VS 노드를 활용하고, 각 세그먼트 구성 노드들의 능력치에 따른 우선순위를 고려함으로써, 미래의 잠재적 연결 요청에 대한 혼잡을 최소화시키는 VS-rooted 기반의 멀티캐스트 라우터링 알고리즘(DVS-PMIPMR: Differentiated Virtual Source-based Priority Minimum Interference Path Multicast Routing algorithm)을 제안한다. 제안된 알고리즘은 과장 및 차단 사용 측면과 비용 면의 효율성을 제고할 수 있다.

그림 5는 제안된 알고리즘을 도식화한 것으로, S는 DWDM 백본 전달망의 소스 노드로, D는 목적지 노드로, N은 송수신 노드 경로 상에 존재하는 중간 노드로 의미한다. 또한 각 VS 노드는 과장 변경률을 고려하여 차등화된 VS(DVS: Differentiated VS) 노드를 적용한 것이며, 오버헤드로 나타낸 DaC 노드를 제외한 나머지 노드들은 본 관 노드라 가정한다.

그림 5에서 미래의 잠재적 연결 요청을 P1=(S1, D11/D12), P2=(S2, D21), P3=(S3, D31) 3개로 가정하고, 과장의 연속 재현성을 만족하는 두 DVS 노드 간의 모든 경로인 세그먼트를 S1=(PV1, N1, N2, DVS1), S2=(PV2, N3, N4, N5, DVS2), S3=(PV3, N6, N7, N8, DVS2) 3개로 가정한다[10,18].

먼저 P1의 멀티캐스트 세션이 요청되면 3개의 세그먼트 중 가장 적은 홀 수와 가장 높은 노드 우선순위를 가지는 세그먼트 S1이 선택된다. 두 번째 멀티캐스트 세션 요청 P2의 경우에는 동일한 이유로 세그먼트 S1이 선택된다. 그러나 방상황에 따라 세 번째 멀티캐스트 세션 요청 P3도 세그먼트 S1을 선택할 경우, 세그먼트 S1에 트레픽이 집중되고, 이로 인해

![그림 5. DVS-PMIPMR 알고리즘 상세도](image-url)
인해 차단 확률이 증가한다. 그러므로 세그먼트 S1보다는 홀 수가 많으나, 세그먼트 S2보다 노드 우선순위가 높고 미래의 다른 멀티캐스트 세션 요청에 대해 최소한의 영향을 미치는 세그먼트 S3를 선택하는 것이 더 효율적이다.

DVS-PMIPMR 알고리즘에서 사용되는 기호들은 다음과 같다.

- \(G(N, L, W) \): 노드 집합 \(N \), 링크 집합 \(L \) 및 링크 간 \(W \)개의 파장 수를 가지는 네트워크
- \((a, b) \): 현재 멀티캐스트 세션 연결 설정을 요청하는 노드 쌍 \((a, b, c \in N) \)
- \(S^a_\text{dc} \): 선택된 노드 쌍 \((a, b) \)의 최소 호 수 세그먼트 \(n \)은 세그먼트의 인덱스, \(n=(1, 2, 3) \)
- \((i, j) \): 미래 멀티캐스트 세션 연결 설정 요청에 의해 연결 설립이 요구될 수 있는 임계적인 경로 간 노드 쌍 \(\forall (i, j \in N) \)
- \(S^a \): 잠재적으로 요청 가능한 노드 쌍 \((i, j) \) 간의 최소 호 수 세그먼트
- \(D_{\text{PS}} \): VS 노드의 파장 변환율
- \(k_{\text{PS}} \): VS 노드로 입력되는 파장의 수
- \(\lambda \): 하나의 파이버당 수용 가능한 파장 수
- \(P^a_\text{dc} \): 세그먼트 \(S^a_\text{dc} \)의 노드 우선순위 가중치
- \(N(D^a_\text{dc}) \): 세그먼트 \(S^a_\text{dc} \) 내의 DaC 노드의 수
- \(N(T^a_\text{dc}) \): 세그먼트 \(S^a_\text{dc} \)에서 구성 노드의 수
- \(CS^a_{(ab)} \): 노드 쌍 \((i, j) \) 세그먼트에 대한 잔존 세그먼트 \(S^a_\text{dc} \)
- \(\pi^a_\text{dc} \): 세그먼트 \(S^a_\text{dc} \)의 링크의 잎
- \(\pi^a_\text{dc} \): 세그먼트 \(S^a_\text{dc} \)의 링크의 잎
- \(\Omega^a_\text{dc} \): 세그먼트 \(S^a_\text{dc} \)상에 First-Fit (FF) 방식에 의해 할당된 파장
- \(F^a_\text{dc} \): 세그먼트 \(S^a_\text{dc} \)에 사용 가능한 파장 껍질
- \(U^a_\text{dc} \): 세그먼트 \(S^a_\text{dc} \)의 파장 이용률
- \(I^a_\text{dc} \): \(S^a_\text{dc} \)에서 최소의 파장 수를 가지고 있는 혼잡 링크 \(\forall I^a_\text{dc} \in L \)
- \(N(S^a_\text{dc}) \): 혼잡 링크 \(I^a_\text{dc} \)의 전체 파장 수
- \(R(I^a_\text{dc}) \): 혼잡 링크 \(I^a_\text{dc} \)의 전이 파장 수
- \(\alpha^a_\text{dc} \): 멀티캐스트 세션 연결 요청 예약에 따른 통계적 세그먼트에 대한 가중치
- \(W(S^a_\text{dc}) \): 통계적 세그먼트에 대한 가중치 \(\alpha^a_\text{dc} \), 파장 이용률 \(U^a_\text{dc} \) 및 노드 우선순위 가중치 \(P^a_\text{dc} \)를 모두 고려한 세그먼트 \(S^a_\text{dc} \)의 총 가중치

3.2 DVS-PMIPMR 알고리즘

체계적 알고리즘에서 VS 노드를 파장 변환율에 따라 차동화시킨 DVS 노드의 사용은 한정된 파장 자원에, 최대의 콘 경로를 최저 비용의 노드 구성을 통해 확보함으로써, 네트워크 구성 비용에 큰 영향을 미친다. DVS 노드를 네트워크에 적용하기 위해, VS 노드의 파장 변환율을 다음 식 (1)과 같이 정의한다.

\[
D_{\text{PS}} = \frac{100k_{\text{PS}}}{\lambda}
\]

(1)

DVS 노드는 식 (1)에 의해 파장 변환율에 따라 30%/30% (30% 이하일 경우), 60%/60% (이하일 경우) 및 100%/100% (이하일 경우)의 파장 변환 가능성을 가지는 DVS 노드로 구분하여 사용한다.

DVS 노드를 활용한 네트워크 구성 후, DVS 노드 간 세그먼트의 노드 우선순위 가중치 \(P^a_\text{dc} \)을 고려하여, 노드 쌍 \((a, b) \)의 \(n \)번째 최소 호 수 세그먼트에 대한 노드 우선순위 가중치는 식 (2)와 같다.

\[
P^a_{\text{dc}} = \frac{N(D^a_\text{dc})}{N(T^a_\text{dc})}
\]

(2)

식 (2)에서 노드 우선순위 가중치 \(P^a_\text{dc} \)는 각 세그먼트의 노드들 중 가장 우선순위가 낮은 DaC 노드의 비율에 의해 정해진다.

 또한 미래의 잠재적인 요청에 따른 혼잡도를 고려하기 위해 다음 식 (3)에서 혼잡 세그먼트를 정의한다.

\[
CS_{(ab)} = \{ (\pi^a_\text{dc} \cap \pi^a_\text{dc} \neq \emptyset) \text{AND} (\Omega^a_\text{dc} \in F^a_\text{dc}) \text{where} \forall (i, j \in P \setminus \{a, b\}, n = 1, 2, 3) \}
\]

(3)

식 (3)은 현재 멀티캐스트 세션 연결을 요청한 노드 쌍 \((a, b) \)의 \(n \)번째 최소 호 수 세그먼트의 링크 중 \((a, b) \)를 제외한 기존의 모든 노드 쌍 \((i, j) \)의 최소 호 수 세그먼트에 속하는 링크와 공유하는 것이 있고, 현재 연결 요청 노드 쌍 \((a, b) \)의 \(n \) 번째 최소 호 수 세그먼트 상에서 FF방식에 의해 할당 가능한 파장 \(\alpha^a_\text{dc} \)이 앞서 선택된 노드 쌍 \((i, j) \)의 최소 호 수 세그먼트의 \((i, j) \)에서 사용 가능한 파장 집합 \(\pi^a_\text{dc} \)에 포함되면, 노드 쌍 \((a, b) \)의 \(n \)번째 최소 호 수 세그먼트는 노드 쌍 \((i, j) \) 세그먼트에 대한 혼잡 세그먼트 \(CS_{(ab)} \)에 포함된다.

전체 네트워크의 모든 세그먼트에 대한 가중치를 고려하는 것은 엄청난 계산량을 요구하기 때문에, 본
알고리즘에서는 식 (4)를 적용하여 간단하게 각 세그먼트에서 미래의 잠재적인 링크 혼잡도를 고려한 파장 이용을 \(U_{ab}^n \) 을 계산한다.

\[
U_{ab}^n = \frac{N(S_{ab}^n \cap CS_p) - R(I_{ab}^n)}{N(S_{ab}^n)}
\]

식 (4)에 의해, 선택된 노드 쌍 \((a, b)\)의 최소 호흡 세그먼트 \(S_{ab}^n\)가 앞서 선택된 노드 쌍 \((i, j)\)의 혼잡 세그먼트에 포함이 될 경우, 파장 이용을 \(U_{ab}^n \)는 혼잡 링크 \(I_{ab}^n\)의 전체 파장 수에 대한 현재 사용 파장 수를 의미한다. 그리고 선택된 노드 쌍 \((a, b)\)의 최소 호흡 세그먼트 \(S_{ab}^n\)가 앞서 선택된 노드 쌍 \((i, j)\)의 혼잡 세그먼트에 포함되지 않을 경우, 파장 이용을 \(U_{ab}^n\)는 0 값을 가지게 된다.

앞서 설명한 노드 우선순위 가중치에 대한 식 (2)와 세그먼트의 잠재적인 혼잡도를 고려한 파장 이용에 해당하는 식 (4)를 포함한 각 세그먼트의 종가중치에 대한 식은 다음 식 (5)와 같다.

\[
W(S_{ab}^n) = \sum \left(\alpha_{ab}^n \cdot U_{ab}^n + P_{ab}^n \right)
\]

각 가중치들의 중요도를 고려할 때, 세그먼트의 노드 우선순위가 가장 높으나 노드 파장 수가 적은, 즉 파장 이용률이 높은 경로의 경우 해당 경로보다 우선순위가 낮더라도 전체 파장 수가 좀 더 많은 경로로 우월하는 것이 파장 사용 측면에서 더 효율적이 다. 즉, 파장 이용률이 노드 우선순위 가중치보다 더 중요한 요소이다. 따라서 식 (5)에 해당하는 세그먼트의 종 가중치는 멀티캐스트 세션 요청 예약에 따른 통계적 세그먼트에 대한 가중치인 \(\alpha_{ab}^n \)와 해당 세그먼트의 파장 이용률 \(U_{ab}^n \)의 곱에 노드 우선순위에 대한 가중치인 \(P_{ab}^n \)을 합한 형태로 나타낼 수 있다.

\[
\min \{ W(S_{ab}^n) \}
\]

최종적으로 멀티캐스트 세션 요청에 따른 예비 세그먼트 중 각각의 종 가중치가 가장 작은 세그먼트를 선택함으로써 노드 우선순위 및 미래의 잠재적 혼잡을 고려한 최적의 세그먼트 경로 설정이 가능하다. 결과적으로 식 (6)과 같이 노드 우선순위 가중치와 세그먼트의 잠재적인 혼잡도를 고려한 각 세그먼트의 종 가중치 \(W(S_{ab}^n) \)값을 최소화하는 방법으로 RWA 문제를 해결하는 것으로 귀착된다.

그림 6. DVS-PMIPMR 알고리즘 순서도

다음 그림 6은 본 소설에서 설명한 수식들을 적용한 DVS-PMIPMR 알고리즘의 전체 과정을 나타낸다.

4. 성능평가

4.1 네트워크 모델

제안된 DVS-PMIPMR 알고리즘의 효율성 검증을 위해, 그림 7과 같이 NSFnet(National Science Foundation Network)인, 14개의 노드와 19개의 광 링크로 이루어진 14-노드 토폴로지 네트워크 모델과
그림 8과 같이 24개의 노드와 42개의 꼭짓점으로 구성된 24-노드 토폴로지 네트워크 모델을 대상으로 Matlab을 활용하여 시뮬레이션 및 성능평가 하였다.

해당 네트워크 모델의 시뮬레이션 환경은 14-노드 토폴로지의 경우 노드 4, 10, 11을 DVS 노드로 하고 노드 6, 9, 14를 DaC 노드로 설정하였으며, 24-노드 토폴로지의 경우에는 노드 7, 9, 11, 16, 17을 DVS 노드로, 노드 6, 12, 14, 15, 19를 DaC 노드로 설정하였다. 네트워크의 각 링크는 30개의 파장 수(채널 수)를 가질 수 있다고 가정한다. 또한 멀티캐스트 서비스에 참여한 소스 노드와 목적지 노드들의 개수를 나타내는 그룹 크기(GS: Group Size)는 각각의 모델에 대해 0.3과 0.4로 설정하였고, 소스 노드에 따른 목적지 노드들의 위치는 동일한 분산 네트워크와 그렇지 않은 분산 네트워크에 균일하게 분포한다고 가정한다.

4.2 DVS-PMIPMR 알고리즘 성능 평가

본 시뮬레이션에 대한 결과 분석 및 평가는 멀티캐스트 세션 요청에 따른 최대 파장 수와 전체 세션 수 측면에서, 기존의 VS-rooted 접근 방법인 VS-MIPMR 알고리즘이 비해하였음 미흡한 성능을 보였다.

멀티캐스트 세션 요청에 따른 최대 파장 수에 대한 기존 VS-MIPMR 알고리즘의 결과는 그림 9과 같이 10도와 같다. 같은 GS를 가지는 조건에서 계산된 DVS-PMIPMR 알고리즘의 기존의 VS-MIPMR 알고리즘에 비해 최대 요구되는 파장 수 측면에서, I4-노드 토폴로지의 경우 0.87%(GS: 0.3)와 0.4%(GS: 0.4)의 거의 비슷한 수치의 개선을 보였으며, 24-노드 토폴로지의 경우 25%(GS: 0.3) 및 29.28%(GS: 0.4)가 개선되는 결과가 나타났다.

노드 수가 상대적으로 적은 14-노드 토폴로지에서는의 개선율은 GS값에 관계없이 거의 같으나, 더 많은 수의 노드로 구성된 24-노드 토폴로지의 경우에는 14-노드 토폴로지보다 높은 개선율을 가지며, 또한 GS값이 클수록 더 큰 개선을 보였다. 즉, 네트워크
그림 11과 그림 12는 멀티캐스트 세션 요청에 따른 파장 채널 수를 도식화한 것이다. 제안된 알고리즘은 기본의 VS-MIPMR 알고리즘 명지에 비해 세션 쌍에서, 14-노드 토폴로지의 경우 22.61%(GS: 0.3)와 23.14%(GS: 0.4)의 개선율을 보였으며, 24-노드 토폴로지의 경우 12.59%(GS: 0.3) 및 19.2%(GS: 0.4)가 개선되었다.

즉, 전체 채널 사용 측면에서 DVS-PMIPMR 알고리즘은 최대 파장 수 측면에서의 작가가지로, 같은 토폴로지 모델에서 GS 값이 증가함수록 더 높은 개선율을 보였다.

결과적으로 제안된 DVS-PMIPMR 알고리즘은 기존의 VS-MIPMR 알고리즘에 비해 멀티캐스트 세션 요청에 따른 최대 파장 수 측면에서 0.85%(14-노드 토폴로지)와 27.14%(24-노드 토폴로지)의 개선율을 보이며, 전체 채널 수 측면에서 22.87%(14-노드 토폴로지) 및 13.18%(24-노드 토폴로지)의 개선율을 달성하였다.

6. 결 론

본 논문에서는 DWDM 기술에 기반한 차세대 광인터넷 백본 전달망 구간에서 IPTV, 화상회의, 가상 중합 현실, 인터넷 게임 등 실시간 멀티미디어 멀티캐스트 서비스의 급격한 증가에 따른 멀티캐스트 RWA문제를 해결하기 위해 DVS-PMIPMR (Differentiated Virtual Source-based Priority Minimum Interference Path Multicast Routing) 알고리즘을 제안하였다.

제안된 알고리즘은 가상스토름 기반으로 주어진 파장 수 환경에서 최대한 많은 수의 멀티캐스트 연결을 달성하며, 또한 노드의 능력에 따른 차등화로 우선 순위를 적용하여 휴리스틱하게 멀티캐스트 라우팅 경로를 효율적으로 선정하는 방법이다.

본 논문에서 제안한 DVS-PMIPMR 알고리즘은 같은 수의 멀티캐스트 세션 연결 요청을 달성하기 위해, 기본의 VS-MIPMR 방식에 비해 0.85%(14-노드 토폴로지의 평균 개선율)와 27.14%(24-노드 토폴로지의 평균 개선율)의 필요 파장 수 감소와 22.87%(14-노드 토폴로지의 평균 개선율) 및 13.18%(24-노드 토폴로지의 평균 개선율)의 전체 사용 채널 수 감소로 트래픽 집중으로 인한 연결 복로킹 확률이 크게 감소된 것을 시뮬레이션 결과로 증명되었다.

본 연구의 결과는 하이퍼 광대역 서비스, 원격회의 및 합업, 원격 교육, 사물정보통신, 스마트 그리드 서비스, IP-USN 서비스, IPTV, VOIP 등의 하이퍼 광대역 멀티캐스트 서비스를 DWDM 전달망을 거쳐 효율적으로 제공하기 위해 효율적인 멀티캐스트 세션 구성에 적용이 가능하다.

참 고 문 헌

김 성 문
1982년〜1985년 한국전자통신연구소 연구원
1985년〜1995년 한국통신연구개발원 연구원
1989년〜1993년 프랑스 파리7대학 석박사
1995년〜현재 부경대학교 정보통신공학과 교수
2000년〜2001년 미국 NIST 초빙연구원
2003년〜현재 한국 ITU-T SG15 의장
2003년〜현재 TTA PG201 프로젝트그룹 의장
2004년〜현재 개방형컴퓨터통신연구회 이사
2008년〜2010년 ITC/확인융합문화포럼 의장
관심분야: 센서 네트워크, 센서 노드 이동성 지원 기술,
수중 센서 네트워크, USN, DWDM, RWA 알고리즘

박 선 영
2011년 2월부경대학교 전자정보
통신공학과 석사과정
2011년 3월부경대학교 정보
통신공학과 석사과정
관심분야: 수중 센서 네트워크,
센서 노드 이동성 지원 기술, RWA 알고리즘