DOI QR코드

DOI QR Code

COMPLETELY INTEGRABLE COUPLED POTENTIAL KDV EQUATIONS

  • Received : 2010.04.09
  • Accepted : 2010.07.21
  • Published : 2011.05.30

Abstract

We make use of the simplified Hirota's bilinear method with computer symbolic computation to study a variety of coupled potential KdV (pKdV) equations. Each coupled equation is completely integrable and gives multiple soliton solutions and multiple singular soliton solutions. The phase shifts for all coupled pKdV equations are identical whereas the coefficients of the obtained solitons are not identical. The four coupled pKdV equations are resonance free.

Keywords

References

  1. M.V.Foursov, Classification of certain integrable coupled potential KdV and modified KdV equations, J. Math. Phys 41(9) (2000), 6173-6185. https://doi.org/10.1063/1.1287643
  2. W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Mathematics and Computers in Simulation 43 (1997), 13-27. https://doi.org/10.1016/S0378-4754(96)00053-5
  3. J. Hietarinta, A search for bilinear equations passing Hirota's three-soliton condition. I. KdV-type bilinear equations, J. Math. Phys., 28(8) (1987), 1732-1742. https://doi.org/10.1063/1.527815
  4. J. Hietarinta, A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations, J. Math. Phys., 28(9) (1987), 2094-2101. https://doi.org/10.1063/1.527421
  5. R. Hirota and M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Japan, 52(3) (1983), 744-748. https://doi.org/10.1143/JPSJ.52.744
  6. R. Hirota, A new form of Backlund transformations and its relation to the inverse scattering problem, Progress of Theoretical Physics, 52(5) (1974, 1498-1512. https://doi.org/10.1143/PTP.52.1498
  7. R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004.
  8. R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27(18) (1971), 1192-1194. https://doi.org/10.1103/PhysRevLett.27.1192
  9. M. Ito, An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher order, J. Physical Society of Japan, 49(2) (1980), 771-778. https://doi.org/10.1143/JPSJ.49.771
  10. A.M.Wazwaz, Partial Differential Equations and Solitary Waves Theory, HEP and Springer, Peking and Berlin, 2009.
  11. A.M.Wazwaz, Analytic study on the one and two spatial dimensional potential KdV equation, Chaos, Solitons, and Fractals, 36 (2008), 175-181. https://doi.org/10.1016/j.chaos.2006.06.018
  12. A.M.Wazwaz, Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations, Commun Nonlin. Sci Numer Simulat, 14 (2009), 2962- 2970. https://doi.org/10.1016/j.cnsns.2008.12.018
  13. A.M.Wazwaz, Multiple soliton solutions and multiple singular soliton solutions for (2+1)- dimensional shallow water wave equations, Phys. Lett. A, 373 (2009), 2927-2930. https://doi.org/10.1016/j.physleta.2009.06.026
  14. A.M.Wazwaz, Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method, Appl. Math. Comput., 190 (2007), 633-640. https://doi.org/10.1016/j.amc.2007.01.056
  15. A.M.Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190 (2007), 1198-1206. https://doi.org/10.1016/j.amc.2007.02.003
  16. A.M.Wazwaz, New solitons and kink solutions for the Gardner equation, Commun Nonlin. Sci Numer Simulat, 12(8) (2007), 1395-1404. https://doi.org/10.1016/j.cnsns.2005.11.007
  17. A.M.Wazwaz, Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192 (2007), 479-486. https://doi.org/10.1016/j.amc.2007.03.023
  18. A. M. Wazwaz, The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation, Appl. Math. Comput., 199(1) (2008), 133-138. https://doi.org/10.1016/j.amc.2007.09.034
  19. A.M.Wazwaz, Multiple-front solutions for the Burgers-Kadomtsev-Petvisahvili equation, Appl. Math. Comput., 200 (2008), 437-443. https://doi.org/10.1016/j.amc.2007.11.032
  20. A.M.Wazwaz, Multiple-soliton solutions for the Lax-Kadomtsev-Petvisahvili (Lax-KP) equation, Appl. Math. Comput., 201(1/2) (2008), 168-174.
  21. A.M.Wazwaz, The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves, Appl. Math. Comput., 201(1/2) (2008) 489-503.
  22. A.M.Wazwaz, Multiple-soliton solutions of two extended model equations for shallow water waves, Appl. Math. Comput., 201(1/2) (2008), 790-799.
  23. A.M.Wazwaz, Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation, Appl. Math. Comput., 204(1) (2008), 20-26. https://doi.org/10.1016/j.amc.2008.05.126
  24. A.M.Wazwaz, Combined equations of the Burgers hierarchy: multiple link solutions and multiple singular kink solutions, Physica Scripta, 82 (2010), 025001. https://doi.org/10.1088/0031-8949/82/02/025001
  25. A.M.Wazwaz, Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota's method, tanh-coth method and Exp-function method, Appl. Math. Comput., 202 (2008), 275-286. https://doi.org/10.1016/j.amc.2008.02.013
  26. A.M. Wazwaz, H. Triki, Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation, Appl. Math. Comput., 216 (2010), 332-336. https://doi.org/10.1016/j.amc.2010.01.067