A Study on the Character of Collar and Lapels According to Collar Laying Amount -Focused on Tailored Jacket-

So-Young Lee†
Dept. of Apparel Design, Konkuk University

Abstract

This study suggests the proper collar laying amount to be actively used in the clothing industry by identifying the characteristics of collar and other related components according to the collar laying amount.

The study comparatively analyzed the characteristics of each collar laying amount (2cm, 2.5cm, 3cm, 3.5cm, 4cm, and 4.5cm) after making 6 tailored jackets. The results are as follows: 1. The best shape of collar and lapel appeared when the collar laying amount was 3cm and 3.5cm. 2. Depending on the collar laying amount, the shape of collar, roll line form of collar and lapel, collar width, collar stand, the position and width of roll line changed. As the collar laying amount increased, the length of collar edge became longer, and the collar stand decreased. In case the collar laying amount was small (2cm, 2.5cm), the width of collar and lapel became narrower. On the contrary, when it is large (4cm, 4.5cm), the width of collar and lapel became wider. 3. Collar laying amount as well as the length of the neck line of collar affected the shape of the collar roll line around the neck.

Key words: Tailored collar, Tailored jacket, Collar laying amount, Collar roll line, Lapel roll line; 테일러드 칼라, 테일러드 제킷, 칼라 붙임분, 칼라 겹침선, 라פל 겹침선

1. 서 론

여성의 사회진출이 활발해짐에 따라 여성복 제작이 의복의 주요 품목으로 자리 잡게 되었으며, 이에 따라 소비자들의 요구수준과 관심도 높아져 의복의 다양화, 고급화, 개성화를 추구하게 되었다.

제작의 완료 방법에 따라 정장이나 캐주얼로도 활용될 수 있어 소매나 칼라 등의 부분에 패션성을 가미시킨 다양한 스타일의 제작이 나오고 있으며 이에 따라 여성복 제작에 관한 연구도 증가하고 있다.

그러나 이러한 여성용 채킷에 관한 연구들은 대부분 여유분이나 체형, 소재와 관련된 것들이 대부분을 차지하고 있으며 채킷의 패턴에 관련된 연구는 미미한 판이다.

테일러드 칼라는 채킷의 중요한 요소로서 큰 부분을 차지하고 있으며, 칼라너비, 스텐드분, 칼라능함분 등이 상호 유기적으로 칼라의 전체적 형태 및 디자인에 영향을 미친다. 그 외 라플레임의 위치, 원단의 부피나 디자인 등도 테일러드 칼라에 영향을 미치므로 정확하게 신중하게 설계되어야 한다. 그러므로 원하는 디자인의 스텐드분이나 칼라너비의 테일러드 칼라를 완성하기 위해서는 적절한 칼라능함분 설정이 필수적이며 현재 테일러드 칼라의 칼라능함분에 중점을 둔 구체적인 연구는 거의 없는 실정이다. 따라서 본 연구에서는 칼라능함분을 달성한 테일러드 채킷을 대상으로 칼라능함분 변화에 따른 칼라 및 기타 관련 구성 요소들의 특성을 파악하여 의관상으로 보기 좋은 칼라능함분의 가이드라인을 제시하고자 한다. 또한 이를 통해 테일러드 칼라 패턴 제작법 연구의 기초자료로 활용하고자 한다.

II. 연구방법 및 내용

본 연구에서는 칼라능함분을 달성한 총 6종의 테일러드 칼라 실험국 제작을 대상으로 칼라 및 라필의 특성을 파악하였다. 칼라너비, 스텐드분, 라필드업점, 원단 등을 유사하게 유지한 재질, 칼라의 능함분 변화시켜 특성을 파악하였으며, 측정용구는 마틴식 인체계측기와 방안자 등이었다.

<그림 1> 연구에 사용된 채킷 및 칼라의 제도법
<표 1> 제도에 이용된 드레스품의 각 항목별 치수

<table>
<thead>
<tr>
<th>항 목</th>
<th>물 력</th>
<th>줄 이</th>
<th>첸</th>
<th>품</th>
<th>나 비</th>
</tr>
</thead>
<tbody>
<tr>
<td>가슴둘레</td>
<td>87.0</td>
<td>62.0</td>
<td>89.0</td>
<td>39.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

1. 실험복 재킷의 제도

연구에 사용된 실험복 재킷은 칼라눌림분을 달리 한 테일러드 칼라 재킷 6종류로, <그림 1>과 같이 김효순(2000)의 테일러드 재킷 제도법으로 제도하였다. 기본형 8호 드레스품의 치수 <표 1>을 대입하여 제도 하였으며 제도 시 앞앞면은 2.5cm, 라벨 잡임길은 위가슴둘레선에서 3cm 내려온 지점으로 하였다. 테일러드 칼라를 제도한 후 칼라의 칼라당임선 길이와 [몸판의 목둘레선-0.5cm]가 되도록 조정하였다. 그 외에 몸판, 칼라등, 칼라의 스텐드분, 라벨바리, 꼬지 라인의 위치 등 모든 조건은 동일하게 제도하고 칼라의 눌림분을 달리하였(각각 2cm, 2.5cm, 3cm, 3.5cm, 4cm, 4.5cm) 실험복 재킷 6종류를 제도하였다.

2. 실험복 재킷의 제작

실험복 소재는 머슬린으로 하였으며, 칼라눌림분만 달리하여 제도한 총 6종의 테일러드 칼라 실험복 재킷을 제작하였다. 실험복 재킷 제작 시, 재킷 제작 단가와 동일한 조건으로 의복이 늘어나거나 형태가 호르러지는 것을 방지하기 위하여 접착지 및 다테이프를 부착하였다.

접착지의 부착부위는 앞판 전체, 안단 전체, 옆 패널의 앞쪽 부분, 뒤편의 앞쪽을 포함한 몸판 앞쪽 부분, 안칼라, 길칼라, 밑단 등이다. 또한 다테이프를 어깨, 라벨의 골목, 앞자락 골, 라벨 검출선(검출선에서 0.6cm 떨어서), 앞쪽, 뒤편, 길칼라의 골목 등에 부착하였다. 실험복에 사용된 머슬린 및 접착지의 물리적 특성은 <표 2>와 같으며 접착성지 및 다테이프의 부착부위는 <그림 2>에 나타냈다.

시점은 목둘레선과 앞폭 1cm, 앞폭 및 뒤편선에 1.5cm, 밑단에 4cm를 주었으며, 공업용 재봉들의 장력은 일정하게 유지시켜 망설 2.5로 박음질 한 후 가름tol로 시점처리하였다.

3. 패턴과 실험복 재킷의 칼라 및 라벨 특성

실험복 재킷은 피자 المادة의 체형차이로 인한 오차를 줄이기 위하여 제도에 이용된 것과 동일한 8호 드레스품에 실험복 재킷 6종류를 차례로 확의시켰으며 의복구성 전공 전문가 5인이 함께 토의 및 분석하여 칼라눌림분에
<그림 3> 실험폭 재킷 칼라의 각 부위별 명칭

A’-B’: 위중심 칼라저림선-칼라쳐임선과 고지라인 교점
B’-C=칼라적임선과 고지라인 교점-라필적이점

<그림 4> 실험폭 재킷의 측정부위

따른 실험폭 재킷의 특성을 파악하였다. 이와 관련한 각
부위별 명칭 및 측정부위는 <그림 3>—<그림 4>와 같으
며 세부적인 내용은 다음과 같다.

1) 칼라외곽선의 길이: 칼라높힘분에 따른 칼라외
곽선의 길이 변화를 알아보기 위해 각 실험폭 재킷의
칼라외곽선 길이를 줄자를 사용하여 측정하였다.

2) 결갈라너비 및 스탠드분: 실험폭 재킷의 결갈라
너비 및 스탠드분 측정 시 칼라의 채임선을 남겨주지
나무지 않고 자연스럽게 둔 채 줄자를 사용하여 측정
하였으며 칼라높힘분 변화에 따른 둔갈라의 퍼짐 정
도 등을 분석하였다.

3) 칼라 및 라필의 채임선: 각 실험폭 재킷에 칼라
및 라필의 채임선을 그려준 후, 채임선의 길이를 측
정하였다. 채임선은 실험폭 재킷을 차의시킨 채 칼라
와 라필을 남겨주지 않고 자연스럽게 둔 상태
에서 뽑아한 연필을 사용하여 0.3cm 간격으로 점을
적어 표시하였다. 실험폭 재킷을 탈의시켜 편편하게
된 후 표시한 점을 연결하여 채임선을 그리주었으며
그러킨 채임선을 따라 칼라채임선(A’-B’) 및 라필채
임선(B’-C)의 길이를 각각 측정하였다.

4) 실험폭 재킷 측정 시의 안정 형상: 실험폭 재킷
을 차의로 착의시켜 칼라 및 라필의 앞뒤 형상을 시
각적으로 관찰하였다.

III. 결과 및 고찰

1. 칼라외곽선의 길이

칼라외곽선의 길이는 칼라의 스탠드분과 결갈라너
비에 영향을 미치는 요소이다. 본 연구결과, 펴린과 실
험폭 재킷의 칼라외곽선은 <표 3>에서 보는 바와 같이
칼라높힘분 증가에 따라 모두 증가되었으나, 실험폭 재
<표 3> 칼라능함분에 따른 칼라외곽선 길이 비교
(단위: cm)

<table>
<thead>
<tr>
<th>항 목</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>페턴</td>
<td>재킷</td>
<td>페턴</td>
<td>재킷</td>
<td>페턴</td>
<td>재킷</td>
<td>재킷</td>
</tr>
<tr>
<td>재킷</td>
<td>14.71</td>
<td>14.51</td>
<td>15.18</td>
<td>14.85</td>
<td>15.50</td>
<td>15.30</td>
</tr>
<tr>
<td>재킷</td>
<td>16.01</td>
<td>16.00</td>
<td>16.70</td>
<td>16.46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<표 4> 칼라능함분에 따른 겉달라너비 및 스탠드분의 비교
(단위: cm)

<table>
<thead>
<tr>
<th>항 목</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>칼라능함분</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.50</td>
</tr>
<tr>
<td>페턴</td>
<td>3.42</td>
<td>3.55</td>
<td>3.63</td>
<td>3.72</td>
<td>3.82</td>
<td>3.90</td>
</tr>
<tr>
<td>재킷</td>
<td>3.00</td>
<td>3.85</td>
<td>3.62</td>
<td>3.50</td>
<td>3.39</td>
<td>3.22</td>
</tr>
</tbody>
</table>

2. 겉달라너비 및 스탠드분의 비교

패턴과 실제 실험복 재킷의 겉달라너비 및 스탠드분을 비교한 결과, 서로 큰 차이점이 나타났다. 패턴 제도가 겉달라너비(4.5cm)보다 스탠드분(3cm)을 칼라능함분과 관계없이 모두 동일하게 제도하였으나, 실험복 재킷에서는 <표 4>에서 나타난 것과 같이 칼라능함분에 따라 겉달라너비 및 스탠드분이 모두 각자 다르게 나타났다. 실험복 재킷에서는 칼라능함분이 증가할수록 스탠드분이 감소되었으며 이에 따라 겉달라너비가 늘어졌다. 이는 칼라능함분이 커질수록 외관으로 보이는 칼라의 외형상태가 늘어나다는 연구결과(안화노, 2008)와도 일치한다. 따라서 겉달라너비 및 스탠드분은 패턴 제도의 수직이 아닌 칼라능함분의 영향을 받는다는 것을 알 수 있다. 실험복 재킷의 겉달라너비는 칼라능함분이 0.5cm 증가할 때마다 평균 0.09cm씩 증가하였다. 칼라능함분이 4.5cm인 경우, 겉달라너비가 3.90cm를 보여 실제 제도가 겉달라너비에서 4.5cm와 0.6cm의 차이를 나타내었으며, 스탠드분은 3.22cm를 보였다. 원하는 겉달라너비를 얻기 위해서는 적절한 칼라능함분을 설정해야 하며, 적절한 칼라능함분 설정은 겉달라너비에 따라 변동하여 적용시켜야 한다. 임자영(2005)은 칼라능함분을 [걸감랄러너비-1.5cm]로 적용시켰으나 본 연구와는 다른 결과를 보였다. 겉달라너비는 옷감 및 심지의 두께, 레진리스 등에 영향을 받으 며(김궁영, 김이숙, 2008), 칼라의 겉달라너비의 부피가 있 기 점차적으로 좀 더 유동적인 작업이 필요하다.

卡尔라능함분에 따른 겉달라너비 및 스탠드분의 변화가 칼라에 어떤 영향을 미치는지 알아보기 위해 칼라 뚜부리와 칼라 외곽선 등을 측정하였으며 칼라를 중심하 여 두목 뒤목 꼴등으로 편마하였었다. 그 결과, <표 5>와 같이 칼라능함분이 증가함에 따라 칼라 뚜부리와 칼라 외곽선이 모두 증가함을 볼 수 있다. 칼라능함분이 2cm인 경우 4.5cm인 것을 비교해 보면, 칼라 뚜부리와 칼라 외곽선 모두 약 1.7cm 가량 차이가 나는 것을 알 수 있다. 또한 뒤달라를 중심시킨 결과로 알 수 있듯이 칼라능함분 증가에 따라 칼라의 외곽선 형태가 점차 오목한 곡선적 형태에서 점차 직선적으로 변화되는 것을 알 수 있다.

3. 칼라 및 뚜부리의 겉달라

패턴과 실험복 재킷 모두 공통적으로 칼라능함분 증가에 따라 칼라 및 뚜부리의 겉달라의 형태가 곡선적으로 변화되었으며 칼라 겉달라의 길이가 증가되었다. 칼라달라의 형태는 칼라능함분의 증가에 따라 오목한 곡선으로 변형되었으며, <표 6>에서 보는 바와 같이 칼라능함분에 따라 실험복 재킷의 칼라 겉달라의 길이가 증가된다.
라플납림분의 위치가 변동되었다. 칼라납림분의 증가에 따라 칼라납림분 및 라플납림분의 각도가 점차 시계방향으로 기울어졌으며 이에 따라 점갈라와 라플의 너비도 넓어지는 현상을 보였다.

칼라납림분의 증가에 따라 칼라납림선 부분의 목돌레 여유량 또한 증가하였다. 여유분량은 주로 앞쪽 보다는 뒷쪽과 뒷쪽에 분포하였다. <표 7>에서 보는 바와 같이 칼라납림분이 2cm인 실험복 제7곡에서는 목돌레 부분의 뒤와 앞에서 각진 형상이 나타났으며, 2.5cm인 경우에도 목돌레 부분이 부드럽게 나타나지 않았다. 칼라납림분 3cm와 3.5cm에서는 칼라의 목돌레 부분이 전체적으로 모나지 않고 부드럽게 형성되었으며, 칼라납림분 4cm와 4.5cm에서는 목돌레 부분의 여유량이 많아져 약간의 각진 형상을 나타냈다.

칼라 목돌레 부분의 각진 형상을 방지하기 위해 칼라의 칼라납림선 길이를 0.5cm 좌계 제도(김광영, 김영숙, 2008)하였으나 이와 같은 결과가 나온 것으로 보아, 칼라납림선의 길이도 칼라납림분에 따라 변화해야 할 것으로 보인다.

4. 실험복 재킷 적용 시의 앞뒤 형상

<표 8>에서 알 수 있듯이 칼라납림분에 따른 칼라의 형상 차이는 앞모습보다는 뒷모습에서 더 두드러지게 나타났으며 칼라납림분이 3cm인 것과 3.5cm인 것이 전체적으로 형상이 좋게 나타났다. 이 결과는, 가장 적당한 칼라납림분을 2.5-3cm로 지정(안효영, 2005)한 연구나 4cm로 지정(안효원, 2008)한 연구와 차이를 보였는데, 이는 라
<표 6> 칼라능함부에 따른 길라 및 라멜의 격임선 비교

(단위: cm)

<table>
<thead>
<tr>
<th>항 목</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>칼라능함부</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>라멜 및 칼라의 격임선</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<표 7> 칼라능함부에 따른 목들레 부분의 형상

(단위: 명(%))

<table>
<thead>
<tr>
<th>항 목</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>목들레 형상</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 платеж점의 위치로 인해 다르게 나타난 것으로 보인다. 앞서 보았을 때의 칼라 및 라멜의 형상은 칼라능함부에 따라 커다란 차이를 보이는 않았으나, 모든 실험에서 재킷에서 라멜겨외점에 따라 라멜겨외점까지 부피감 있게 점하여 실제보다 라멜겨외점이 올라가 보이는 형상을 보였다.

칼라능함부 2cm와 2.5cm인 실험에서 재킷 칼라에는 필요 이상의 스탠드본이 생성되어 스탠드본이 높
아랫부분 4cm와 4.5cm의 제켓에서는 칼라외곽선의 길이 증가로 인해 칼라 및 라벨이 몸판에서 돌리는 현상이 나타났다. 칼라높힘분은 칼라뿐 아니라 라벨착임선에도 영향을 미쳤는데, 칼라높힘분 2cm와 2.5cm의 실험복 제켓에서는 라벨의 착임선이 실제 제도한 착임선보다 덜 깨어져 라벨입니가 감소하였으며, 4cm와 4.5cm의 실험복 제켓에서는 라벨의 착임선이 몸판 쪽으로 더 깨어져 라벨입니가 증가하였다. 칼라높힘분 2cm와 4.5cm의 실험복 제켓에서는 라벨의 너비가 증가한 분량은 각각 약 0.3cm 정도로 라벨너비의 차이는 0.6cm 정도가 발생했다.

앞에서 보았을 때의 업동해 여유분량은 주로 업동 쪽에서 나타났는데, 칼라높힘분이 4cm 이상부터 많은 여유량을 보였다.
발자세에서 보았을 때의 갈라 형상에서는 갈라늘이들이에 따라 스텐드론 및 갈라의 피질 형상에 차이를 보였다. 갈라늘이들이 2cm인 것과 2.5cm인 실험복 재킷의 경우 갈라의 피질 길이의 부족으로 인하여 갈라가 당겨져 올라가 갈라의 스텐드론이 높아졌으며, 이에 따라 되돌아간 부분이 느슨해졌었다. 또한 갈라가 되돌아간 부분에서는 약간 밀착된 듯이 보였고, 일부에서는 여유가 되돌아워 비해 많았다. 그러나, 갈라늘이들이 3cm와 3.5cm의 실험복 재킷에서는 되돌아간 부분이 약간 여유가 되돌아있다. 컴퓨터로 2.5cm인 실험복 재킷의 갈라늘에서의 염목검에서 튀지 않도록 2cm 정도까지는 갈라늘이들이 보이지 않았으나, 튀지 않으면서도 0.2cm 정도 갈라늘이들이 드러났다. 갈라늘이들이 4cm인 것이 4.5cm인 실험복 재킷에서는 갈라늘이들이 노출되지 않았으나, 갈라의 피질 길이가 증가함에 따라 갈라늘이들이 튀지 않도록 되돌아간 전체적 경사가 물판에서 들뜨며 물판에 자연스럽게 높이지 않았다.

IV. 요약 및 결론

본 연구의 목적은, 갈라늘이들이 변화에 따른 갈라 및 기타 관련 구성 요소들의 특성을 파악하여, 임상적으로 가장 좋은 갈라늘이들이의 가이드라인을 제시하고자 하는데 있다. 또한 이를 통해 태일리드 칼라 패턴 제작법 연구의 기초자료로 활용하고자 한다.

이를 위해 갈라늘이들이 달려있는 실험복 재킷 6종을 제작하여 각 특성을 비교하였다고 한다. 실험복 재킷 제도와 여름은 2.5cm, 패업감은 위가습도소견의 3cm 하에 저항으로, 갈라늘이들이는 7.5cm로 하였으며, 갈라늘이들이 달려있던 각각 2cm, 2.5cm, 3cm, 3.5cm, 4cm, 4.5cm 갈라늘이들이로 갈라늘이들이 패업함에 따라 갈라늘이들이 패업의 형태 및 처서 변화를 제시하여 분석하였다.

본 연구의 결과를 요약하면 다음과 같다.

1. 실험복 재킷 착용 시 갈라 및 라벨의 형상이 가장 좋은 갈라늘이들이는 3cm, 3.5cm의 것이었다. 갈라늘이들의 위치가 패업과 같게 나타난 실험복 갈라늘이들이는 3cm, 3.5cm의 것이었다. 갈라늘이들이 적은 경우(2cm, 2.5cm)에는, 갈라의 피질 길이가 줄어들면서 갈라의 스텐드론이 증가하여 갈라늘이들이 작아졌으며 이에 따라 되돌아간 갈라늘이들이 노출되었다. 또한 갈라 및 라벨이 당겨 올라 갈라늘이들이 높이지 않았다. 반면, 갈라늘이들이 많은 경우(4cm, 4.5cm)에는 갈라의 피질 길이가 길어져 갈라늘이들이 높이지 않으며 여유가 많아져 물판에 잘 안착되지 못하였다.

2. 재킷 패턴과 실험복 재킷에서 갈라늘이들의 유형에 따라 갈라늘이들의 판독과 여유가 증가하였다. 실험복 재킷 갈라늘이들이 적거나(2cm, 2.5cm) 많은 경우(4cm, 4.5cm)에는 갈라늘이들의 부분이 부드럽고, 각이 지지고 보다 보다 납은 형상을 보였다. 이로써 갈라늘이들의 부분의 부드러운 형상은 물판에 여유를 빌고 적절한 문제를 가리는 갈라늘이들의 유형과 관계가 있음을 알 수 있다. 갈라제도 시 갈라늘이들의 부분의 복합체가 부드럽게 형상이상하게 하기 위해서는 갈라늘이들의 유형을 물판의 부드러움보다 적게 제도(김용호, 김수숙, 신상호, 송희준, 2009)라는 신형연구를 바탕으로 갈라늘이들의 유형을 부드러움으로 제도하여 이러한 결과가 나올 것으로 보아, 갈라늘이들의 유형이었던 갈라늘이들의 부분의 복합체 형상에 영향을 미친 것을 알 수 있었다.

이와 같이 갈라늘이들이는 갈라의 피질 길이, 갈라스턴드론, 갈라늘이들이 너비, 갈라늘이들의 부분의 복합체 형상 등에 영향을 미쳤다.

본 실험복 재킷에서 가장 적당한 갈라늘이들이는 3cm와 3.5cm로 나타났으나, 2.5~3.5cm로 나온 연구결과(임자영, 2005)나, 4.3cm(안재호, 2008)로 나타난 연구결과와 차이를 보였다. 이는 라벨감질의 위치차이로 인해 다르게 나타난 것으로 보인다. 임자영(2005) 연구의 라벨감질은 본 연구의 라벨감질보다 0.2cm 아래로 (앞쪽에서 9cm 내려온 지점의 지점으로는 왼쪽의 쪽입에, 갈라늘이들이 7cm, 스텐드론 2.5cm)가 된다. 안재호(2008)는 라벨감질 위치가 본 연구보다 10cm 내려온 점(앞쪽에서 라벨감질을 따라 37cm 지점)이었으며 갈라늘이들이 7.2cm, 스텐드론 2cm였다. 본 연구는 라벨감질 위치가 가습도운자의 3cm 아래, 갈라늘이들이 7.5cm, 스텐드론 3cm로 한 실험복 재킷을 대상으로 한 연구결과이므로, 라벨감질 위치가 갈라늘이들이, 스텐드론 등의 차이로 인해 이 같은 차이점이 나타났다고 할 수 있다. 그 외에 신형연구와의 동일점도 나타났는데, 갈라늘이들이 경계에 따라 갈라늘이들의 높이가 높아진 것이다. 이것은 갈라늘이들이에 커지면서 갈라늘이들의 위치가 높아지는 현상이다. 안재호(2008)의 연구결과와 일치하였다. 제도 시 모두 갈라늘이들이는 4.5cm, 스텐드론 3cm로 동일하게 제도하였으나 이러한 결과가 나온 것으로 보아, 갈라늘이들이 및 스텐드론은 패턴 제도 시 설
정한 높이로 형성되는 것이 아니라 칼라농합분에 따라 결정될 수 있다. 본 연구에서 칼라농합분만 달리 하고 칼라농합분, 스탠드분을 고정시켜 실험한 결과, 칼라농합분이 적은 경우 칼라필름이 많이 떨어져 칼라달립선의 손기인이 보인다. 또한 칼라농합분이 적으면 칼라농합분의 손기인이 보이는 경우에는 손기인을 감추기 위해 칼라의 너비를 증가시킬 것이 아니라 중합적으로 판단하여 칼라농합분을 일정하게 증가시켜야 할 것임을 알 수 있다. 칼라농합분, 칼라와목선의 길이, 칼라농합분, 레프팅점의 위치, 원단의 부피나 디자인 등의 영향을 받으므로, 원하는 디자인의 테일러드 칼라 제작을 위해서는 테일러드 칼라 제작이 제도에 따라 적절한 칼라농합분을 설정하고 제도에 따라 적절한 칼라농합분을 적용할 필요가 있다. 본 연구는 테일러드 칼라 제작의 이론적 구술적 측면에서의 적절한 칼라농합분을 찾기 위한 것으로, 테일러드 칼라 제작에 따라 적절한 칼라농합분을 제시하였다. 그러나 실제 테일러드 칼라 제작의 제도 시에는 동상 칼라농합분 및 스탠드분에 따라 그에 일치하는 칼라농합분을 설정하므로, 본 연구와는 순서를 달리하여 칼라농합분의 변화에 따른 적절한 칼라농합분을 설정하는 연구도 필요할 것이다.

참고문헌

연구 숙명여자대학교 대학원 박사가호 논문.