DOI QR코드

DOI QR Code

Current status of dental caries diagnosis using cone beam computed tomography

  • Park, Young-Seok (Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Ahn, Jin-Soo (Department of Biomaterials Science and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kwon, Ho-Beom (Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Seung-Pyo (Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2011.03.16
  • Accepted : 2011.04.29
  • Published : 2011.06.30

Abstract

Purpose : The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). Materials and Methods : An online PubMed search was performed to identify studies on caries research using CBCT. Results : Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. Conclusion : The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future.

Keywords

References

  1. Pereira AC, Verdonschot EH, Huysmans MC. Caries detection methods: can they aid decision making for invasive sealant treatment? Caries Res 2001; 35 : 83-9. https://doi.org/10.1159/000047437
  2. Ministry of Health and Welfare. National survey of oral health in 2006. Seoul: Ministry of Health and Welfare; 2007. p. 59-70.
  3. Attrill DC, Ashley PF. Occlusal caries detection in primary teeth: a comparison of DIAGNOdent with conventional methods. Br Dent J 2001; 190 : 440-3.
  4. Ohki M, Okano T, Nakamura T. Factors determining the diagnostic accuracy of digitized conventional intra-oral radiographs. Dentomaxillofac Radiol 1994; 23 : 77-82. https://doi.org/10.1259/dmfr.23.2.7835507
  5. Senel B, Kamburoglu K, Uçok O, Yüksel SP, Ozen T, Avsever H. Diagnostic accuracy of different imaging modalities in detection of proximal caries. Dentomaxillofac Radiol 2010; 39 : 501-11. https://doi.org/10.1259/dmfr/28628723
  6. Tsuchida R, Araki K, Okano T. Evaluation of a limited conebeam volumetric imaging system: comparison with film radiography in detecting incipient proximal caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104 : 412-6. https://doi.org/10.1016/j.tripleo.2007.02.028
  7. Bader JD, Shugars DA. A systematic review of the performance of a laser fluorescence device for detecting caries. J Am Dent Assoc 2004; 135 : 1413-26.
  8. Haak R, Wicht MJ, Noack MJ. Conventional, digital and contrast- enhanced bite-wing radiographs in the decision to restore proximal carious lesions. Caries Res 2001; 35 : 193-9. https://doi.org/10.1159/000047455
  9. Moystad A, Svanaes DB, Risnes S, Larheim TA, Grondahl HG. Detection of approximal caries with a storage phosphor system. A comparison of enhanced digital images with dental X-ray film. Dentomaxillofac Radiol 1996; 25 : 202-6. https://doi.org/10.1259/dmfr.25.4.9084274
  10. Tam LE, McComb D. Diagnosis of occlusal caries: Part II. Recent diagnostic technologies. J Can Dent Assoc 2001; 67 : 459-63.
  11. Mitropoulos P, Rahiotis C, Stamatakis H, Kakaboura A. Diagnostic performance of the visual caries classification system ICDAS II versus radiography and micro-computed tomography for proximal caries detection: an in vitro study. J Dent 2010; 38 : 859-67. https://doi.org/10.1016/j.jdent.2010.07.005
  12. Jablonski-Momeni A, Stachniss V, Ricketts DN, Heinzel- Gutenbrunner M, Pieper K. Reproducibility and accuracy of the ICDAS-II for detection of occlusal caries in vitro. Caries Res 2008; 42 : 79-87. https://doi.org/10.1159/000113160
  13. Pitts NB, Rimmer PA. An in vivo comparison of radiographic and directly assessed clinical catres status of posterior approximal surfaces in primary and permanent teeth. Caries Res 1992; 26 : 146-52. https://doi.org/10.1159/000261500
  14. Peers A, Hiff FJ, Mitropoulos CM, Holloway PJ. Validity and reproducibility of clinical examination, fiber-optic transillumination, and bitewing radiology for the diagnosis of small approximal carious lesion: an in vitro study. Caries Res 1993; 27 : 307-11. https://doi.org/10.1159/000261556
  15. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, et al. The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 2007; 35 : 170-8. https://doi.org/10.1111/j.1600-0528.2007.00347.x
  16. Yang J, Dutra V. Utility of radiology, laser fluorescence, and transillumination. Dent Clin North Am 2005; 49 : 739-52. https://doi.org/10.1016/j.cden.2005.05.010
  17. Souza-Zaroni WC, Ciccone JC, Souza-Gabriel AE, Ramos RP, Corona SA, Palma-Dibb RG. Validity and reproducibility of different combinations of methods for occlusal caries detection: an in vitro comparison. Caries Res 2006; 40 : 194-201. https://doi.org/10.1159/000092225
  18. Raper HR. A new kind of X-ray examination for preventive dentistry. Int J Orthod Oral Surg 1925; 11 : 76-86.
  19. Tyndall DA, Ludlow JB, Platin E, Nair M. A comparison of Kodak Ektaspeed Plus film and the Siemens Sidexis digital imaging system for caries detection using receiver operating characteristic analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85 : 113-8. https://doi.org/10.1016/S1079-2104(98)90408-5
  20. Syriopoulos K, Sanderink GC, Velders XL, van der Stelt PF. Radiographic detection of approximal caries: a comparison of dental films and digital imaging systems. Dentomaxillofac Radiol 2000; 29 : 312-8. https://doi.org/10.1038/sj.dmfr.4600553
  21. Abreu M Jr, Mol A, Ludlow JB. Performance of RVGui sensor and Kodak Ektaspeed Plus film for proximal caries detection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 91 : 381-5. https://doi.org/10.1067/moe.2001.112393
  22. Nair MK, Nair UP. An in-vitro evaluation of Kodak Insight and Ektaspeed Plus film with a CMOS detector for natural proximal caries: ROC analysis. Caries Res 2001; 35 : 354-9. https://doi.org/10.1159/000047474
  23. Khan EA, Tyndall DA, Caplan D. Extraoral imaging for proximal caries detection: Bitewings vs scanogram. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 98 : 730-7. https://doi.org/10.1016/j.tripleo.2004.08.006
  24. Wenzel A, Hintze H. The choice of gold standard for evaluating tests for caries diagnosis. Dentomaxillofac Radiol 1999; 28 : 132-6. https://doi.org/10.1038/sj.dmfr.4600439
  25. Haiter-Neto F, Wenzel A, Gotfredsen E. Diagnostic accuracy of cone beam computed tomography scans compared with intraoral image modalities for detection of caries lesions. Dentomaxillofac Radiol 2008; 37 : 18-22. https://doi.org/10.1259/dmfr/87103878
  26. Moystad A, Svanaes DB, Larheim TA, Grondahl HG. Effect of image magnification of digitized bitewing radiographs on approximal caries detection: an in vitro study. Dentomaxillofac Radiol 1995; 24 : 255-9. https://doi.org/10.1259/dmfr.24.4.9161171
  27. Wenzel A, Pitts N, Verdonschot EH, Kalsbeek H. Developments in radiographic caries diagnosis. J Dent 1993; 21 : 131-40. https://doi.org/10.1016/0300-5712(93)90022-I
  28. White SC, Yoon DC. Comparative performance of digital and conventional images for detecting proximal surface caries. Dentomaxillofac Radiol 1997; 26 : 32-8. https://doi.org/10.1038/sj.dmfr.4600208
  29. Kalathingal SM, Mol A, Tyndall DA, Caplan DJ. In vitro assessment of cone beam local computed tomography for proximal caries detection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104 : 699-704. https://doi.org/10.1016/j.tripleo.2006.08.032
  30. Hintze H, Wenzel A, Danielsen B, Nyvad B. Reliability of visual examination, fibre-optic transillumination, and bitewing radiography, and reproducibility of direct visual examination following tooth separation for the identification of cavitated carious lesions in contacting approximal surfaces. Caries Res 1998; 32 : 204-9. https://doi.org/10.1159/000016454
  31. Wenzel A. Bitewing and digital bitewing radiography for detection of caries lesions. J Dent Res 2004; 83 Spec No C : C72-5.
  32. Hintze H, Wenzel A, Jones C. In vitro comparison of D- and E-speed film radiography, RVG, and visualix digital radiography for the detection of enamel approximal and dentinal occlusal caries lesions. Caries Res 1994; 28 : 363-7. https://doi.org/10.1159/000262002
  33. Wenzel A, Borg E, Hintze H, Grondahl HG. Accuracy of caries diagnosis in digital images from charge-coupled device and storage phosphor systems: an in vitro study. Dentomaxillofac Radiol 1995; 24 : 250-4. https://doi.org/10.1259/dmfr.24.4.9161170
  34. Tyndall DA, Rathore S. Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications. Dent Clin North Am 2008; 52 : 825-41. https://doi.org/10.1016/j.cden.2008.05.002
  35. Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973; 46 : 1016-22. https://doi.org/10.1259/0007-1285-46-552-1016
  36. Lo EC, Zhi QH, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent 2010; 38 : 352-9. https://doi.org/10.1016/j.jdent.2010.01.001
  37. Ito K, Gomi Y, Sato S, Arai Y, Shinoda K. Clinical application of a new compact CT system to assess 3-D images for the preoperative treatment planning of implants in the posterior mandible. A case report. Clin Oral Implants Res 2001; 12 : 539-42. https://doi.org/10.1034/j.1600-0501.2001.120516.x
  38. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004; 33 : 291-4. https://doi.org/10.1259/dmfr/25500850
  39. Honda K, Arai Y, Kashima M, Takano Y, Sawada K, Ejima K, et al. Evaluation of the usefulness of the limited cone-beam CT (3DX) in the assessment of the thickness of the roof of the glenoid fossa of the temporomandibular joint. Dentomaxillofac Radiol 2004; 33 : 391-5. https://doi.org/10.1259/dmfr/54316470
  40. Ziegler CM, Woertche R, Brief J, Hassfeld S. Clinical indications for digital volume tomography in oral and maxillofacial surgery. Dentomaxillofac Radiol 2002; 31 : 126-30. https://doi.org/10.1038/sj.dmfr.4600680
  41. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8 : 1558-64. https://doi.org/10.1007/s003300050586
  42. Danforth RA. Cone beam volume tomography: a new digital imaging option for dentistry. J Calif Dent Assoc 2003; 31 : 814-5.
  43. Sukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 2003; 6(Suppl 1) : 31-6.
  44. Scarfe WC. Imaging of maxillofacial trauma: evolutions and emerging revolutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 100(2 Suppl) : S75-96. https://doi.org/10.1016/j.tripleo.2005.05.057
  45. Webber RL, Horton RA, Tyndall DA, Ludlow JB. Tunedaperture computed tomography (TACT). Theory and application for three-dimensional dento-alveolar imaging. Dentomaxillofac Radiol 1997; 26 : 53-62. https://doi.org/10.1038/sj.dmfr.4600201
  46. Tyndall DA, Clifton TL, Webber RL, Ludlow JP, Horton RA. TACT imaging of primary caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84 : 214-25. https://doi.org/10.1016/S1079-2104(97)90072-X
  47. Nair MK, Tyndall DA, Ludlow JB, May K, Ye F. The effects of restorative material and location on the detection of simulated recurrent caries. A comparison of dental film, direct digital radiography and tuned aperture computed tomography. Dentomaxillofac Radiol 1998; 27 : 80-4. https://doi.org/10.1038/sj.dmfr.4600323
  48. Abreu Junior M, Tyndall DA, Platin E, Ludlow JB, Phillips C. Two- and three-dimensional imaging modalities for the detection of caries. A comparison between film, digital radiography and tuned aperture computed tomography. Dentomaxillofac Radiol 1999; 28 : 152-7. https://doi.org/10.1038/sj.dmfr.4600430
  49. Nance RS, Tyndall DA, Levin LG, Trope M. Diagnosis of external root resorption using TACT (tuned-aperture computed tomography). Endod Dent Traumatol 2000; 16 : 24-8. https://doi.org/10.1034/j.1600-9657.2000.016001024.x
  50. Nance R, Tyndall D, Levin LG, Trope M. Identification of root canals in molars by tuned-aperture computed tomography. Int Endod J 2000; 33 : 392-6. https://doi.org/10.1046/j.1365-2591.2000.00330.x
  51. Ramesh A, Ludlow JB, Webber RL, Tyndall DA, Paquette D. Evaluation of tuned aperture computed tomography (TACT) in the localization of simulated periodontal defects. Dentomaxillofac Radiol 2001; 30 : 319-24. https://doi.org/10.1038/sj.dmfr.4600635
  52. Terakado M, Hashimoto K, Arai Y, Honda M, Sekiwa T, Sato H. Diagnostic imaging with newly developed ortho cubic superhigh resolution computed tomography (Ortho-CT). Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 89 : 509-18. https://doi.org/10.1016/S1079-2104(00)70133-8
  53. van Daatselaar AN, Dunn SM, Spoelder HJ, Germans DM, Renambot L, Bal HE, et al. Feasibility of local CT of dental tissues. Dentomaxillofac Radiol 2003; 32 : 173-80. https://doi.org/10.1259/dmfr/28402359
  54. van Daatselaar AN, Tyndall DA, van der Stelt PF. Detection of caries with local CT. Dentomaxillofac Radiol 2003; 32 : 235-41. https://doi.org/10.1259/dmfr/86813332
  55. van Daatselaar AN, Tyndall DA, Verheij H, van der Stelt PF. Minimum number of basis projections for caries detection with local CT. Dentomaxillofac Radiol 2004; 33 : 355-60. https://doi.org/10.1259/dmfr/14130662
  56. van Daatselaar AN, van der Stelt PF, Weenen J. Effect of number of projections on image quality of local CT. Dentomaxillofac Radiol 2004; 33 : 361-9. https://doi.org/10.1259/dmfr/23496562
  57. Akdeniz BG, Grondahl HG, Magnusson B. Accuracy of proximal caries depth measurements: comparison between limited cone beam computed tomography, storage phosphor and film radiography. Caries Res 2006; 40 : 202-7. https://doi.org/10.1159/000092226
  58. Young SM, Lee JT, Hodges RJ, Chang TL, Elashoff DA, White SC. A comparative study of high-resolution cone beam computed tomography and charge-coupled device sensors for detecting caries. Dentomaxillofac Radiol 2009; 38 : 445-51. https://doi.org/10.1259/dmfr/88765582
  59. Qu X, Li G, Zhang Z, Ma X. Detection accuracy of in vitro approximal caries by cone beam computed tomography images. Eur J Radiol (in press).
  60. Kamburoglu K, Murat S, Yuksel SP, Cebeci AR, Paksoy CS. Occlusal caries detection by using a cone-beam CT with different voxel resolutions and a digital intraoral sensor. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109 : e63-9.
  61. Kayipmaz S, Sezgin OS, Saricaoglu ST, Can G. An in vitro comparison of diagnostic abilities of conventional radiography, storage phosphor, and cone beam computed tomography to determine occlusal and approximal caries. Eur J Radiol (in press).
  62. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983; 148 : 839-43.
  63. McNeil BJ, Hanley JA. Statistical approaches to the analysis of receiver operating characteristic (ROC) curves. Med Decis Making 1984; 4 : 137-50. https://doi.org/10.1177/0272989X8400400203
  64. Rothwell PM. Can overall results of clinical trials be applied to all patients? Lancet 1995; 345 : 1616-9. https://doi.org/10.1016/S0140-6736(95)90120-5
  65. Park YS, Bae GH, Jang J, Shon WJ. Theory of X-ray microcomputed tomography in dental research: application for the caries research. J Kor Acad Cons Dent 2011; 36 : 98-107. https://doi.org/10.5395/JKACD.2011.36.2.98

Cited by

  1. Dental Imaging Using Mesoscopic Fluorescence Molecular Tomography: An ex Vivo Feasibility Study vol.1, pp.4, 2011, https://doi.org/10.3390/photonics1040488
  2. Histological Validation of Cone-Beam Computed Tomography Versus Laser Fluorescence and Conventional Diagnostic Methods for Occlusal Caries Detection vol.33, pp.2, 2011, https://doi.org/10.1089/pho.2014.3831
  3. Optimization of dental CBCT exposures through mAs reduction vol.44, pp.9, 2011, https://doi.org/10.1259/dmfr.20150108
  4. Ex vivoevaluation of new 2D and 3D dental radiographic technology for detecting caries vol.45, pp.3, 2016, https://doi.org/10.1259/dmfr.20150281
  5. Detection of Caries under Fixed Prosthodontic Restorations Using Cone-beam CT: A Meta-analysis vol.10, pp.4, 2011, https://doi.org/10.5005/jp-journals-10019-1294
  6. Accuracy of Cone-beam Computed Tomography and Extraoral Bitewings Compared to Intraoral Bitewings in Detection of Interproximal Caries vol.21, pp.12, 2011, https://doi.org/10.5005/jp-journals-10024-2979
  7. Accuracy of Cone-beam Computed Tomography and Extraoral Bitewings Compared to Intraoral Bitewings in Detection of Interproximal Caries vol.21, pp.12, 2011, https://doi.org/10.5005/jp-journals-10024-2979
  8. Relationship between CNR and visibility of anatomical structures of cone-beam computed tomography images under different exposure parameters vol.49, pp.5, 2011, https://doi.org/10.1259/dmfr.20190336
  9. Dentale Volumentomographie in der Parodontologie : Systematische Literaturübersicht vol.64, pp.11, 2011, https://doi.org/10.1007/s12614-020-9430-7
  10. Micro-computed tomography in preventive and restorative dental research: A review vol.51, pp.None, 2011, https://doi.org/10.5624/isd.20210087
  11. Applying synthetic radiography to intraoral tomosynthesis: a step towards achieving 3D imaging in the dental clinic vol.50, pp.2, 2011, https://doi.org/10.1259/dmfr.20200159