DOI QR코드

DOI QR Code

Fractal analysis of mandibular trabecular bone: optimal tile sizes for the tile counting method

  • Huh, Kyung-Hoe (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Baik, Jee-Seon (Department of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University) ;
  • Yi, Won-Jin (Department of Oral and Maxillofacial Radiology, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Heo, Min-Suk (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Sam-Sun (Department of Oral and Maxillofacial Radiology, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Choi, Soon-Chul (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Sun-Bok (Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Lee, Seung-Pyo (Department of Oral Anatomy, BK21 Craniomaxillofacial Life Science, and Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2011.03.15
  • Accepted : 2011.04.29
  • Published : 2011.06.30

Abstract

Purpose : This study was performed to determine the optimal tile size for the fractal dimension of the mandibular trabecular bone using a tile counting method. Materials and Methods : Digital intraoral radiographic images were obtained at the mandibular angle, molar, premolar, and incisor regions of 29 human dry mandibles. After preprocessing, the parameters representing morphometric characteristics of the trabecular bone were calculated. The fractal dimensions of the processed images were analyzed in various tile sizes by the tile counting method. Results : The optimal range of tile size was 0.132 mm to 0.396 mm for the fractal dimension using the tile counting method. The sizes were closely related to the morphometric parameters. Conclusion : The fractal dimension of mandibular trabecular bone, as calculated with the tile counting method, can be best characterized with a range of tile sizes from 0.132 to 0.396 mm.

Keywords

References

  1. Mandelbrot BB. The fractal geometry of nature. New York: WH Freeman; 1983.
  2. Zamir M. On fractal properties of arterial trees. J Theor Biol 1999; 197 : 517-26. https://doi.org/10.1006/jtbi.1998.0892
  3. Eblen-Zajjur A, Salas R, Vanegas H. Fractal analysis of spinal dorsal horn neuron discharges by means of sequential fractal dimension D. Comput Biol Med 1996; 26 : 87-95. https://doi.org/10.1016/0010-4825(95)00043-7
  4. Zbilut JP, Mayer-Kress G, Sobotka PA, O'Toole M, Thomas JX Jr. Bifurcations and intrinsic chaotic and 1/f dynamics in an isolated perfused rat heart. Biol Cybern 1989; 61 : 371-8. https://doi.org/10.1007/BF00200802
  5. Ishibashi A, Aihara K, Kotani M. Chaos in brain and neurons and an analysis on the fractal dimensions. Iyodenshi To Seitai Kogaku 1988; 26 : 57-61.
  6. Majumdar S, Weinstein RS, Prasad RR. Application of fractal geometry techniques to the study of trabecular bone. Med Phys 1993; 20 : 1611-9. https://doi.org/10.1118/1.596948
  7. Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E, et al. Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 1998; 8 : 618-25. https://doi.org/10.1007/s001980050108
  8. Lin JC, Grampp S, Link T, Kothari M, Newitt DC, Felsenberg D, et al. Fractal analysis of proximal femur radiographs: correlation with biomechanical properties and bone mineral density. Osteoporos Int 1999; 9 : 516-24.
  9. Jiang C, Giger ML, Chinander MR, Martell JM, Kwak S, Favus MJ. Characterization of bone quality using computer-extracted radiographic features. Med Phys 1999; 26 : 872-9. https://doi.org/10.1118/1.598604
  10. Majumdar S, Lin J, Link T, Millard J, Augat P, Ouyang X, et al. Fractal analysis of radiographs: assessment of trabecular bone structure and prediction of elastic modulus and strength. Med Phys 1999; 26 : 1330-40. https://doi.org/10.1118/1.598628
  11. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, et al. Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 2001; 16 : 697-704. https://doi.org/10.1359/jbmr.2001.16.4.697
  12. Southard TE, Southard KA, Lee A. Alveolar process fractal dimension and postcranial bone density. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 91 : 486-91. https://doi.org/10.1067/moe.2001.112598
  13. Ruttimann UE, Webber RL, Hazelrig JB. Fractal dimension from radiographs of peridental alveolar bone. A possible diagnostic indicator of osteoporosis. Oral Surg Oral Med Oral Pathol 1992; 74 : 98-110. https://doi.org/10.1016/0030-4220(92)90222-C
  14. Southard TE, Southard KA, Jakobsen JR, Hillis SL, Najim CA. Fractal dimension in radiographic analysis of alveolar process bone. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996; 82 : 569-76. https://doi.org/10.1016/S1079-2104(96)80205-8
  15. Hildebolt CF. Osteoporosis and oral bone loss. Dentomaxillofac Radiol 1997; 26 : 3-15. https://doi.org/10.1038/sj.dmfr.4600226
  16. Lee KI, Choi SC, Park TW, You DS. Fractal dimension calculated from two types of region of interest. Dentomaxillofac Radiol 1999; 28 : 284-9. https://doi.org/10.1038/sj.dmfr.4600458
  17. Wilding RJ, Slabbert JC, Kathree H, Owen CP, Crombie K, Delport P. The use of fractal analysis to reveal remodelling in human alveolar bone following the placement of dental implants. Arch Oral Biol 1995; 40 : 61-72. https://doi.org/10.1016/0003-9969(94)00138-2
  18. Shrout MK, Roberson B, Potter BJ, Mailhot JM, Hildebolt CF. A comparison of 2 patient populations using fractal analysis. J Periodontol 1998; 69 : 9-13. https://doi.org/10.1902/jop.1998.69.1.9
  19. Cha SY, Han WJ, Kim EK. Usefulness of fractal analysis for the diagnosis of periodontitis. Korean J Oral Maxillofac Radiol 2001; 31 : 35-42.
  20. Heo MS, Park KS, Lee SS, Choi SC, Koak JY, Heo SJ, et al. Fractal analysis of mandibular bony healing after orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 94 : 763-7. https://doi.org/10.1067/moe.2002.128972
  21. Law AN, Bollen AM, Chen SK. Detecting osteoporosis using dental radiographs: a comparison of four methods. J Am Dent Assoc 1996; 127 : 1734-42. https://doi.org/10.14219/jada.archive.1996.0134
  22. Paumgartner D, Losa G, Weibel ER. Resolution effect on the stereological estimation of surface and volume and its interpretation in terms of fractal dimensions. J Microsc 1981; 121 : 51-63. https://doi.org/10.1111/j.1365-2818.1981.tb01198.x
  23. Caligiuri P, Giger ML, Favus M. Multifractal radiographic analysis of osteoporosis. Med Phys 1994; 21 : 503-8.
  24. Parkinson IH, Fazzalari NL. Methodological principles for fractal analysis of trabecular bone. J Microsc 2000; 198 : 134-42. https://doi.org/10.1046/j.1365-2818.2000.00684.x
  25. Eriksen EF, Mosekilde L, Melsen F. Trabecular bone resorption depth decreases with age: differences between normal male and females. Bone 1985; 6 : 141-6. https://doi.org/10.1016/8756-3282(85)90046-8
  26. Weinstein RS, Hutson MS. Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone 1987; 8 : 137-42. https://doi.org/10.1016/8756-3282(87)90012-3
  27. Mosekilde L. Age-related changes in vertebral trabecular bone architecture-assessed by a new method. Bone 1988; 9 : 247-50. https://doi.org/10.1016/8756-3282(88)90038-5
  28. Palle S, Chappard D, Vico L, Riffat G, Alexandre C. Evaluation of the osteoclastic population in iliac crest biopsies from 36 normal subjects: a histoenzymologic and histomorphometric study. J Bone Miner Res 1989; 4 : 501-6.
  29. Moore RJ, Durbridge TC, McNeil PJ, Parkinson IH, Need AG, Vernon-Roberts B. Trabecular spacing in post-menopausal Australian women with and without vertebral fractures. Aust N Z J Med 1992; 22 : 269-73. https://doi.org/10.1111/j.1445-5994.1992.tb02124.x
  30. Geraets WG, van der Stelt PF. Fractal properties of bone. Dentomaxillofac Radiol 2000; 29 : 144-53. https://doi.org/10.1038/sj.dmfr.4600524
  31. Geraets WG, Van der Stelt PF, Netelenbos CJ, Elders PJ. A new method for automatic recognition of the radiographic trabecular pattern. J Bone Miner Res 1990; 5 : 227-33. https://doi.org/10.1002/jbmr.5650050305
  32. White SC, Rudolph DJ. Alterations of the trabecular pattern of the jaws in patients with osteoporosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 88 : 628-35. https://doi.org/10.1016/S1079-2104(99)70097-1

Cited by

  1. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal vol.2016, pp.None, 2011, https://doi.org/10.1155/2016/5469587
  2. The fractal based analysis of human face and DNA variations during aging vol.10, pp.6, 2011, https://doi.org/10.5582/bst.2016.01182
  3. FRACTAL-BASED CLASSIFICATION OF HUMAN BRAIN RESPONSE TO LIVING AND NON-LIVING VISUAL STIMULI vol.26, pp.5, 2011, https://doi.org/10.1142/s0218348x1850069x
  4. FRACTAL-BASED ANALYSIS OF THE INFLUENCE OF VARIATIONS OF RHYTHMIC PATTERNS OF MUSIC ON HUMAN BRAIN RESPONSE vol.26, pp.5, 2011, https://doi.org/10.1142/s0218348x18500809
  5. Evaluation of trabecular pattern of mandible using fractal dimension, bone area fraction, and gray scale value: comparison of cone-beam computed tomography and panoramic radiography vol.35, pp.1, 2019, https://doi.org/10.1007/s11282-018-0316-1
  6. Evaluation of the peri-implant bone trabecular microstructure changes in short implants with fractal analysis vol.6, pp.None, 2011, https://doi.org/10.1186/s40729-020-00209-7
  7. Trabecular and cortical mandibular bone investigation in familial adenomatous polyposis patients vol.11, pp.1, 2011, https://doi.org/10.1038/s41598-021-88513-z