Anti-inflammatory Effect of Quercus Salicina in IFN-${\gamma}$/LPS-stimulated Mouse Peritoneal Macrophage

  • Cho, Kyung-Hee (Department of Oriental Pharmacy, College of Pharmacy, Woosuk University) ;
  • Choi, Jae-Hyuk (Department of Oriental Pharmacy, College of Pharmacy, Woosuk University) ;
  • Jeon, Hoon (Department of Oriental Pharmacy, College of Pharmacy, Woosuk University)
  • Received : 2011.02.24
  • Accepted : 2011.06.09
  • Published : 2011.06.25

Abstract

Quercus salicina has been widely used as a traditional medicine for the treatment of various diseases. In macrophages, nitric oxide (NO) is released as an inflammatory mediator and has been proposed to be an important modulator of many pathophysiological conditions in inflammation. In the present study, the inhibitory effect of methanolic extracts of Q. salicina (QSM) on NO production in LPS-stimulated mouse (C57BL/6) peritoneal macrophages was investigated. QSM suppressed NO production without notable cytotoxiciy. QSM also exhibited down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression via attenuation of NF-${\kappa}B$ translocation to nucleus in rIFN-${\gamma}$ and LPS stimulated mouse peritoneal macrophages. The present study strongly suggest that Q. salicina may be beneficial in diseases which related to macrophage-mediated inflammatory disorders.

Keywords

References

  1. Saha, K., Lajis, N.H., Israf, D.A., Hamzah, A.S., Khozirah, S., Khamis, S., Syahida, A. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J Ethnopharmacol 92: 263-267, 2004. https://doi.org/10.1016/j.jep.2004.03.007
  2. Rakel, D.P., Rindfleisch, A. Inflammation: nutritional, botanical, and mind-body influences. South Med J 98: 303-310, 2005. https://doi.org/10.1097/01.SMJ.0000154775.16761.A9
  3. Chen, Y.J., Hsu, K.W., Tssai, J.N., Hung, C.H., Kuo, T.C., Chen, Y.L. Involvement of protein kinase C in the inhibition of lipopolysaccharide-induced nitiric oxide production by thapsigargin in RAW 264.7 macrophages. Int J Biochem Cell Biol 37: 2574-2585, 2005. https://doi.org/10.1016/j.biocel.2005.07.002
  4. Erridge, C., Bennett-Guerrero, E., Poxton, I.R. Structure and function of lipopolysaccharides. Microbes. Infect 4: 837-851, 2002. https://doi.org/10.1016/S1286-4579(02)01604-0
  5. Nakagawa, T., Yokozawa, T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40: 1745-1750, 2002. https://doi.org/10.1016/S0278-6915(02)00169-2
  6. Kim, H.K., Cheon, B.S., Kim, Y.H., Kim, S.Y., Kim, H.P. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58: 759-765, 1999. https://doi.org/10.1016/S0006-2952(99)00160-4
  7. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Kwon, T.O., Yun, Y.G., Kim, N.Y., Chung, H.T. Inhibitory effects of methanol extract of Cyperus rotundus rhizomes on nitric oxide and superoxide productions by murine macrophage cell line, RAW 264.7 cells. J Ethnopharmacol 76: 59-64, 2001. https://doi.org/10.1016/S0378-8741(01)00221-5
  8. Chang, Y.C., Li, P.C., Chen, B.C., Chang, M.S., Wang, J.L., Chiu, W.T., Lin, C.H. Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-kappa B pathways. Cell Signal, 18: 1235-1243, 2006. https://doi.org/10.1016/j.cellsig.2005.10.005
  9. Park, E.J., Min, H.Y., Ahn, Y.H., Bae, C.M., Pyee, J.H., Lee, S.K. Synthesis and inhibitory effects of pinosylvin derivatives on prostaglandin E2 production in lipopolysaccharide-induced mouse macrophage cells. Bioorg Mad Chem Lett 14: 5895-5898, 2004. https://doi.org/10.1016/j.bmcl.2004.09.022
  10. Ikegami, F., Sekine, T., Fujii, Y. Anti-dermaptophyte activity of phenolic compounds in "mokusaku-eki". Yakugaku Zasshi 118: 27-30, 1998. https://doi.org/10.1248/yakushi1947.118.1_27
  11. Elliott, M. Cushing's disease: a new approach to therapy in equine and canine patients. British Homeopathic Journal 90: 33-36, 2001. https://doi.org/10.1054/homp.1999.0450
  12. Mayer, W., Seitz, H., Jochims, J.C. On tanning compounds from the wood of chestnut and oak. Justus Liebigs Annalen der Chemie 721: 186-193, 1969. https://doi.org/10.1002/jlac.19697210123
  13. Nonaka, G., Sakai, T., Tanaka, T., Mihashi, K., Nishioka, I. Tannins and related compounds. XCVII. Structure revision of C-glycosidic ellagitannins, castalagin, vescalagin, casuarinin and stachyurin, and related hydrolyzable tannins. Chem Pharm Bull 38: 2151-2156, 1990. https://doi.org/10.1248/cpb.38.2151
  14. Nishimura, H., Nonaka, G., Nishioka, I. Tannins and related compounds. XLVI. Isolation and structures of stenophynins A and B, novel tannins from Quercus stenophylla Makino. Chem Pharm Bull 34: 3223-3227, 1986. https://doi.org/10.1248/cpb.34.3223
  15. Ishimaru, K., Ishimatsu, M., Nonaka, G., Mihashi, K., Iwase, Y., Nishioka, I. Tannins and related compounds. LXXII. Isolationand characterization of mongolicanin (procyanidinoellagitannin), mongolinin A, acutissimin C and vescalagin carboxylic acid, novel tannins from Quercus mongolica var. grossesserrata. Chem Pharm Bull 36: 3319-3327, 1988. https://doi.org/10.1248/cpb.36.3319
  16. Kim, J.I., Kim, H.H., Kim, S., Lee, K.T., Ham, I.H., Whang, W.K. Antioxidative compounds from Quercus salicina Blume stem. Arch Pharm Res 31: 274-278, 2008. https://doi.org/10.1007/s12272-001-1152-2
  17. Moriyama, M.T., Suga, K., Miyazawa, K., Tanaka, T., Higashioka, M., Noda, K., Oka, M., Tanaka, M., Suzuki, K. Inhibitions of urinary oxidative stress and renal calcium level by an extract of Quercus salicina Blume/Quercus stenophylla Makino in a rat calcium oxalate urolithiasis model. Int J Urol 16: 397-401, 2009. https://doi.org/10.1111/j.1442-2042.2009.02268.x
  18. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol 65: 55-63, 1983.
  19. Baek, W.K., Park, J.W., Lim, J.H., Suh, S.I., Suh, M.H., Gabrielson, E., Kwon, T.K. Molecular cloning and characterization of the human budding uninhibited by benomyl (BUB3) promoter. Gene 295: 117-123, 2002. https://doi.org/10.1016/S0378-1119(02)00827-2
  20. Thiemermann, C., Vane, J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182: 591-595, 1990. https://doi.org/10.1016/0014-2999(90)90062-B
  21. Wallace J.L. Distribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles, and the categorization of nonsteroidal anti-inflammatory drugs (NSAIDs). Am J Med 13, 107, 11S-16S; discussion 16S-17S, 1999. https://doi.org/10.1016/S0002-9343(99)00363-0
  22. Minghetti, L., Levi, G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog Neurobiol 54: 99-125, 1998. https://doi.org/10.1016/S0301-0082(97)00052-X
  23. Xie, Q.W., Kashiwabara, Nathan, C. Role of transcription factor NF-kappa B/ Rel in induction of nitric oxide synthase. J Biol Chem 269: 4705-4708, 1994.
  24. Bertolini, A., Ottani, A., Sandrini, M. Dual acting antiinflammatory drugs: a reappraisal. Pharmacol Res 44: 437-450, 2001. https://doi.org/10.1006/phrs.2001.0872