DOI QR코드

DOI QR Code

Antimicrobial Effects of Natural Flavonoids and a Novel Flavonoid, 7-O-Butyl Naringenin, on Growth of Meat-borne Staphylococcus aureus Strains

  • Moon, Sun- Hee (Division of Animal Life Science, Konkuk University) ;
  • Lee, Kyoung-Ah (Division of Animal Life Science, Konkuk University) ;
  • Park, Keun-Kyu (Division of Animal Life Science, Konkuk University) ;
  • Kim, Kee-Tae (Bio/Molecular Informatics Center, Konkuk University) ;
  • Park, Yong-Sun (Bio/Molecular Informatics Center, Konkuk University) ;
  • Nah, Seung-Yeal (Bio/Molecular Informatics Center, Konkuk University) ;
  • Mendonca, Aubrey F. (Department of Food Science and Human Nutrition, Iowa State University) ;
  • Paik, Hyun-Dong (Division of Animal Life Science, Konkuk University)
  • Received : 2010.12.24
  • Accepted : 2011.06.13
  • Published : 2011.06.30

Abstract

The antimicrobial effects of the natural flavonoids kaempferol, quercetin, apigenin, and naringenin as well as a novel flavonoid 7-O-butyl naringenin against the growth of four meat-born Staphylococcus aureus strains were evaluated. First, the flavonoids were screened for inhibitory effects against the growth of each strain using the paper disc diffusion method. Second, the growth inhibitory effects of flavonoids that showed antimicrobial activity were measured using the microplate method. Third, the bactericidal effects of flavonoids were evaluated in a 0.8% (w/v) NaCl solution. All flavonoids showed bacteriostatic effects at >20 mM. Among the flavonoids studied, quercetin was more effective than the others tested. However, the inhibitory effect of 7-O-butyl naringenin on growth of S. aureus KCCM 32395 was greater than that of quercetin at the same concentration. Additionally, 7-O-butyl naringenin exhibited significant bactericidal effects at >25 ${\mu}M$. When bacterial cells were examined using scanning electron microscopy, it appeared that the S. aureus membranes were damaged or morphologically changed when treated with quercetin and 7-O-butyl naringenin at 200 ${\mu}M$.

Keywords

References

  1. Anastasia, K., Christine, K. K., Stella, Z., Marouska, Z., Samah, D., Helen, S., and Georgios, L. B. (2008) Occurrence of flavonoids in Ophrys (Orchidaceae) flower parts. Flora. 203, 602-609. https://doi.org/10.1016/j.flora.2007.09.009
  2. Bang, W., Hanson, D. J., and Drake, M. A. (2008) Effect of salt and sodium nitrite on growth and enterotoxin production of Staphylococcus aureus during the production of air-dried fresh pork sausage. J. Food Prot. 71, 191-195.
  3. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods-a review. In. J. Food Microbiol. 94, 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
  4. Chang, C. C., Yeh, M. H., Wen, H. M., and Chern, J. C., (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10, 178-182.
  5. Conti, M., Mastromarino, P., Sorgro, R., and Desideri, N. (1998) Anti-picornavirus activity of synthetic flavon-3-yl esters. J. Antiviral Chem. Chemother. 9, 511-515.
  6. Eugene, B. K., and Brian, B. A. (2008) Methicillin-resistant Staphylococcus aureus and athletes. J. Am. Acad. Dermatol. 59, 494-502. https://doi.org/10.1016/j.jaad.2008.04.016
  7. Feyza, O., Belma, A., Sahlan, O., and Senol, A. (2009) Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem. 112, 874-879. https://doi.org/10.1016/j.foodchem.2008.06.061
  8. Jirawan, O. A., Suzukib, T., Gasaluck, P., and Eumkeb, G. S. (2006) Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT-Food Sci. Technol. 39, 1214-1220. https://doi.org/10.1016/j.lwt.2005.06.015
  9. Kang, S. M., Lee, S. H., Kwon, C. H., and Jung, S. H. (2006a) Solubility enhancement of flavonoids by cyclosophoaose isolated from Rhizobium meliloti 2011. J. Microbiol. Biotechnol. 16, 791-794.
  10. Kang, S. S., Kim, J. G., Lee, T. H., and Oh, K. B. (2006b) Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull. 29, 1751-1755. https://doi.org/10.1248/bpb.29.1751
  11. Kim, K. T., Yeo, E. J., Han, Y. S., Nah, S. Y., and Paik, H.-D. (2005) Antimicrobial, anti-flammatory, and anti-oxidative effect of water and ethanol extracted Brazilian propolis. Food Sci. Biotechnol. 14, 474-478.
  12. Kim, K. T., Moon, S. H., Yeo, E. J., Han, Y. S., Nah, S. Y., and Paik, H.-D. (2006) Inhibitory effect of 7-O-butyl naringenin on growth of Helicobacter pylori ATCC 26695. Food Sci. Biotechnol. 15, 466-468.
  13. Kim, K. T. and Paik, H.-D. (2008) Propolis as a multi-functional natural material for health. In: Natural products as future medicinal agents. Hawthorne S (ed). India: kerala. pp. 33-48.
  14. Lee, G. S., Kim, E. S., Cho, S. I., Kim, J. H., Choi, G., Ju, Y. S., Park, S. H., Jeong, S. I., and Kim, H. J. (2010) Antibacterial and synergistic activity of prenylated chalcone isolated from the foots of Sophora flavescens. J. Korean Soc. Appl. Biol. Chem. 53, 290-296. https://doi.org/10.3839/jksabc.2010.045
  15. Lee, Y. J., Kim, B. G., Park, Y. H., Lim, Y. H., Hur, H. G., and Ahn, J. H. (2006) Biotransformation of flavonoids with Omethytransferase from Bacillus cereus. J. Microbiol. Biotechnol. 16, 1090-1096.
  16. Lenka, N., Pavel, K., Ladislav, K., Miluse, S., and Josef, P. (2009) Antimicrobial properties of selected essential oils in vapour phase against food-borne bacteria. Food Control 20, 157-160. https://doi.org/10.1016/j.foodcont.2008.03.007
  17. Lu, D. and Holtom, P. (2005) Community-acquired methicillin- resistant Staphylococcus aureus, a new player in sports medicine. Curr. Sports Med. Rep. 4, 265-270. https://doi.org/10.1097/01.CSMR.0000306220.17928.7c
  18. Lua, L. C., Chen, Y. W., and Chou, C. C. (2005) Antibacterial activity of propolis against Staphylococcus aureus. Int. J. Food Microbiol. 102, 213-220. https://doi.org/10.1016/j.ijfoodmicro.2004.12.017
  19. Mohammad, R. F., Gholamreza, A., and Mohammad, M. A. A. (2007) Antimicrobial activities of Iranian sumac and avishane shirazi (Zataria multiXora) against some food-borne bacteria. Food Control 18, 646-649. https://doi.org/10.1016/j.foodcont.2006.03.002
  20. Moon, S. H., Kim, K. T., Lee, N. K., Han, Y. S., Nah, S. Y., Cho, S. G., Park, Y. S., and Paik, H.-D. (2009) Inhibitory effects of naringenin and its novel dirivatives in hyaluronidase. Food Sci. Biotechnol. 18, 267-270.
  21. Negi, P. S., Jayaprakasha, G. K., and Jena, B. S. (2008) Antibacterial activity of the extracts from the fruit rinds of Garcinia cowa and Garcinia pedunculata against food borne pathogens and spoilage bacteria. LWT-Food Sci. Technol. 41, 1857-1861. https://doi.org/10.1016/j.lwt.2008.02.009
  22. Negi, P. S., John, S. K., and Rao, P. U. (2002) Antimicrobial activity of mango sap. Eur. Food Res. Technol. 214, 327-330. https://doi.org/10.1007/s00217-001-0485-7
  23. Ng, T. B., Ling, J. M. L., Wang, Z. T., Cai, J. N., and Xu, G. J. (2006) Examination of coumarins, flavonoids and polysaccharopeptide for antibacterial activity. Gen. Pharm. 27, 1237-1240.
  24. Osawa, K., Yasuda, H., Maruyama, T., Morita, H., Takeya, K., and Itokawa, H. (1992) Isoflavanones from the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria. Chem. Pharm. Bull. 40, 2970-2974. https://doi.org/10.1248/cpb.40.2970
  25. Osman, U., Berrin, O., Yakut, A., Ufuk, A., and Erdem, Y. (2006) Flavonoids with anti-Helicobacter pylori activity from Cistus laurifolius leaves. J. Ethnopharmacol. 108, 457-461. https://doi.org/10.1016/j.jep.2006.06.001
  26. Richard, D. L., Frank, J. S., Mary, E. H., Miwako, K., Gerald, B. H., and Catherine, C. N. (2004) Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J. Ethnopharmacol. 94, 279-281. https://doi.org/10.1016/j.jep.2004.06.013
  27. Rota, C., Carramiñana, J. J., Burillo, J., and Herrera, A. (2004) In vitro antimicrobial activity of essential oils from aromatic plants against selected food-borne pathogens. J. Food Prot. 67, 1252-1256.
  28. SAS (1995) SAS/STAT user's guide. SAS Institute Inc., Cary, NC, USA.
  29. Sohn, H. Y., Son, K. H., Kwon, C. S., Kwon, G. S., and Kang, S. S. (2004) Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 11, 666-672. https://doi.org/10.1016/j.phymed.2003.09.005
  30. Son, D. J., Lee, S. E., and Park, B. S. (2003) Inhibitory effects of naturally occurring flavonoids on a human intestinal bacterium, Clostridium botulinum. Food Sci. Biotechnol. 12, 180-182.
  31. Stojanovic, G., Radulovic, N., Hashimoto, T., and Palic, R. (2005) Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae). J. Ethnopharmacol. 101, 185-190. https://doi.org/10.1016/j.jep.2005.04.026
  32. Tim, C. T. P., and Lamb, A. J. (2005) Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 26, 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  33. Tsugawa, H., Suzuki, H., and Nakagawa, I. (2008) Alphaketoglutarate oxidoreductase, an essential salvage enzyme of energy metabolism, in coccoid form of Helicobacter pylori. Biochem. Biophys. Res. Commun. 376, 46-51. https://doi.org/10.1016/j.bbrc.2008.08.078
  34. Yan, Y., Yi, Z. B., and Liang, Y. Z. (2007) Main antimicrobial components of Tinospora capillipes, and their mode of action against Staphylococcus aureus. FEBS Lett. 581, 4179-4183. https://doi.org/10.1016/j.febslet.2007.07.056
  35. ZhiBiao, Y., Yan, Y., Zeng, L. Y., and Bao, Z. (2008) In vitro antioxidant and antimicrobial activities of the extract of Pericarpium citri Reticulatae of a new Citrus cultivar and its main flavonoids. LWT-Food Sci.Technol. 41, 597-603. https://doi.org/10.1016/j.lwt.2007.04.008

Cited by

  1. Antimicrobial activity of kaempferol and resveratrol in binary combinations with parabens or propyl gallate against Enterococcus faecalis vol.61, 2016, https://doi.org/10.1016/j.foodcont.2015.10.001
  2. Evaluation of antioxidant and antibacterial properties of extracts from Trollius chinensis Bunge vol.240, pp.2, 2015, https://doi.org/10.1007/s00217-014-2329-2
  3. Effects of Luteolin and Quercetin in Combination with Some Conventional Antibiotics against Methicillin-Resistant Staphylococcus aureus vol.17, pp.11, 2016, https://doi.org/10.3390/ijms17111947
  4. Antioxidative Activities of Rhus verniciflua Bark from Different Area vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.430
  5. Quercetin dietary supplementation of fattening lambs at 0.2% rate reduces discolouration and microbial growth in meat during refrigerated storage vol.93, pp.2, 2013, https://doi.org/10.1016/j.meatsci.2012.08.023
  6. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract vol.49, 2013, https://doi.org/10.1016/j.indcrop.2013.04.039