Application of Disease Resistance Markers for Developing Elite Tomato Varieties and Lines

  • 투고 : 2011.04.14
  • 심사 : 2011.05.03
  • 발행 : 2011.08.30

초록

Using the abundant available information about the tomato genome, we developed DNA markers that are linked to disease resistant loci and performed marker-assisted selection (MAS) to construct multi-disease resistant lines and varieties. Resistance markers of Ty-1, T2, and I2, which are linked to disease resistance to Tomato yellow leaf curl virus (TYLCV), Tomato mosaic virus (ToMV), and Fusarium wilt, respectively, were developed in a co-dominant fashion. DNA sequences near the resistance loci of TYLCV, ToMV, and Fusarium wilt were used for primer design. Reported candidate markers for powdery mildew-resistance were screened and the 32.5Cla marker was selected. All four markers (Ty-1, T2, I2, and 32.5Cla) were converted to cleavage amplification polymorphisms (CAPS) markers. Then, the CAPS markers were applied to 96 tomato lines to determine the phenetic relationships among the lines. This information yielded clusters of breeding lines illustrating the distribution of resistant and susceptible characters among lines. These data were utilized further in a MAS program for several generations, and a total of ten varieties and ten inbred lines were constructed. Among four traits, three were introduced to develop varieties and breeding lines through the MAS program; several cultivars possessed up to seven disease resistant traits. These resistant trait-related markers that were developed for the tomato MAS program could be used to select early stage seedlings, saving time and cost, and to construct multi-disease resistant lines and varieties.

키워드

참고문헌

  1. Alexander, L.J. 1971. Host-pathogen dynamics of tobacco mosaic virus on tomato. Phytopathology 61:611-617. https://doi.org/10.1094/Phyto-61-611
  2. Alpert, K.B. and S.D. Tanksley. 1996. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA. 93:15503-15507. https://doi.org/10.1073/pnas.93.26.15503
  3. Areshchenkova, T. and M.W. Ganal. 2002. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor. Appl. Genet. 104:229-235. https://doi.org/10.1007/s00122-001-0775-2
  4. Bai, Y., C.C. Huang, R. van der Hulst, F. Meijer-Dekens, G. Bonnema, and P. Lindhout. 2003. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol. Plant-Microbe Interact 16:169-176. https://doi.org/10.1094/MPMI.2003.16.2.169
  5. Bai, Y., R. van der Hulst, C.C. Huang, L. Wei, P. Stam, and P. Lindhout. 2004. Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic, single locus markers. Theor. Appl. Genet. 109:1215-1223. https://doi.org/10.1007/s00122-004-1698-5
  6. Bai, Y., R. van der Hulst, G. Bonnema, T.C. Marcel, F. Meijer-Dekens, R.E. Niks, and P. Lindhout. 2005. Tomato defense to Oidium neolycopersici: Dominant OI genes confer isolatedependent resistance via a different mechanism than recessive oI-2. Mol. Plant-Microbe Interact 18:354-362. https://doi.org/10.1094/MPMI-18-0354
  7. Bernatzky, R. and S.D. Tanksley. 1986. Toward a saturated linkage map of tomato based on isozymes and random cDNA sequences. Genetics 112:887-898.
  8. Bertin, I., J.H. Zhu, and M.D. Gale. 2005. SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor. Appl. Genet. 110:1467-1472. https://doi.org/10.1007/s00122-005-1981-0
  9. Bohn, G.W. and C.M. Tucker. 1939. Immunity to Fusarium wilt in the tomato. Science 89:603-604. https://doi.org/10.1126/science.89.2322.603
  10. Bonierbale, M.W., R.L. Plaisted, and S.D. Tanksley. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095-1103.
  11. Bournival, B.L., J.W. Scott, and C.E. Vallejos. 1989. An isozyme marker for resistance to race 3 of Fusarium oxysporum f.sp. lycopersici in tomato. Theor. Appl. Genet. 78:489-494. https://doi.org/10.1007/BF00290832
  12. Budiman, M.A., L. Mao, T.C. Wood, and R.A. Wing. 2000. A Deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res. 10:129-136.
  13. Cirulli, M. and L.J. Alexander. 1966. A comparison of pathogenic isolates of Fusarium oxysporum f. lycopersici and different sources of resistance in tomato. Phytopathology 56:1301-1304.
  14. De Giovanni, C., P. Dell'Orco, A. Bruno, F. Ciccarese, C. Lotti, and L. Ricciardi. 2004. Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci. 166:41-48. https://doi.org/10.1016/j.plantsci.2003.07.005
  15. Eshed, Y. and D. Zamir. 1995. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147-1162.
  16. Frisch, M., M. Bohn, and A.E. Melchinger. 1999. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci. 39:1259-1301. https://doi.org/10.2135/cropsci1999.0011183X003900040062x
  17. Gu, W.K., N.F. Weeden, J. Yu, and D.H. Wallace. 1995. Large-scale, cost-effective screening of PCR products in marker-assisted selection applications. Theor. Appl. Genet. 91:465-470.
  18. Hanson, P.M., D. Bernacchi, S. Greem, S.D. Tanksley, V. Munjyappa, A.S. Padmaja, H. Chen, G. Kuo, D. Fang, and J. Chen. 2000. Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Amer. Soc. Hort. Sci. 15:15-20.
  19. Hanson, P.M., S.K. Green, and G. Kuo. 2006. Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet. Coop. Rep. 56:17-18.
  20. Huang, C.C., P.M. van de Putte, J.G. Haanstra-van der Meer, F. Meijer- Dekens, and P. Lindhout. 2000. Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: Evidence for close linkage of two Ol-genes on chromosome 6. Heredity 85:511-520. https://doi.org/10.1046/j.1365-2540.2000.00770.x
  21. Ji, Y. and J.W. Scott. 2006. Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Tomato Genet. Coop. Rep. 56:22-25.
  22. Jung, J., S. Park, W.Y. Liu, and B. Kang. 2010. Discovery of single nucleotide polymorphism in Capsicum and SNP markers for cultivar identification. Euphytica 175:91-107. https://doi.org/10.1007/s10681-010-0191-2
  23. Kang, B.C., S.H. Nahm, J.H. Huh, H.S. Yoo, J.W. Yu, M.H. Lee, and B.D. Kim. 2001. An interspecific (Capsicum annuum ${\times}$ C. chinense) $F_2$ linkage map in pepper using RFLP and AFLP markers. Theor. Appl. Genet. 102:531-539. https://doi.org/10.1007/s001220051678
  24. Kim, M.Y., K. Van, P. Lestari, J.-K. Moon, and S.H. Lee. 2005. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor. Appl. Genet. 110:1003-1010. https://doi.org/10.1007/s00122-004-1887-2
  25. Lanfermeijer, F.C., J. Dijkhuis, M.J.G. Sturre, P. de Haan, and J. Hille. 2003. Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-$2^2$ from Lycopersicon esculentum. Plant Mol. Biol. 52:1037-1049.
  26. Latterot, H. 1976. Mapping of I-2 allele in tomato, controlling the genetic resistance to phthotype 2 of Fusarium oxysporum f. sp. Lycopersici wilt. Ann. Amelior. Plant 26:485-491.
  27. Lindhout, P., H. van der Beek, and G. Pet. 1994. Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium lycopersicum): Mapping of resistance gene Ol-1 on chromosome 6 of Lycopersicon hirsutum. Acta Hort. 376:387-394.
  28. Martin, G.B., S.H. Brommomschenkel, J. Chunwongse, A. Frary, M.W. ganal, R. Spivey, T. Wu, E.D. Earle, and S.D. Tanksley. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432-1436. https://doi.org/10.1126/science.7902614
  29. McGrath, D.J., D. Gillespie, and L. Vawdrev. 1987. Inheritance of resistance to Fusarium oxysporum f. sp. lycopersici races 2 and 3 in Lycopersieonpennellii. Aust. J. Agr. Res. 38:729-733. https://doi.org/10.1071/AR9870729
  30. Moore, S., P. Payton, M. Wright, S. Tanksley, and J. Giovannoni. 2005. Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J. Experimental Bot. 56:2885-2895. https://doi.org/10.1093/jxb/eri283
  31. Paddock, E.F. 1950. A tentative assignment of the Fusariumimmunity locus to linkage group 5 in tomato. Genetics 35:683-684.
  32. Peleman, J.D. and J.R. van der Voort. 2003. Breeding by design. Trends Plant Sci. 8:330-334. https://doi.org/10.1016/S1360-1385(03)00134-1
  33. Prigge, V., A.E. Melchinger, B.S. Dhillon, and M. Frisch. 2009. Efficiency gain of marker-assisted backcrossing by sequentially increasing marker densities over generations. Theor. Appl. Genet. 119:23-32. https://doi.org/10.1007/s00122-009-1013-6
  34. Rohlf, F.J. 2005. NTSYS-pc, numerical taxonomy and multivariate analysis system, version 2.2. Exeter software, Setauket, New York, USA.
  35. Sarfatti, M., J. Katan, R. Fluhr, and D. Zamir. 1989. An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor. Appl. Genet. 78:755-759.
  36. Schroedoer, W.T., R. Provividenti, and R.W. Robinson. 1967. Incubation temperature and virus strains important in evaluating tomato genotypes for tobacco mosaic virus reactions. Tomato Genet. Coop. Rep. 17:47-48.
  37. Shibata, D. 2005. Genome sequencing and functional genomics approaches in tomato. J Gen. Plant Pathol. 71:1-7. https://doi.org/10.1007/s10327-004-0150-7
  38. Stall, R.E. and J.M. Walter. 1965. Selection and inheritance of resistance in tomato to isolates of races 1 and 2 of the Fusarium wilt organism. Phytopathology 55:1213-1215.
  39. Thomas, C.M., P. Vos, M. Zabeau, D.A. Jones, K.A. Norcott, B.P. Chadwick, and J.D.G. Jones. 1995. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 8:785-794. https://doi.org/10.1046/j.1365-313X.1995.08050785.x
  40. Wu, F., L.A. Mueller, D. Crouzillat, V. Petiard, and S.D. Tanksley. 2006. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and sysemnatic studies: A test case in the euasterid plant clade. Genetics 174:1407-1420. https://doi.org/10.1534/genetics.106.062455
  41. Yamanoto, N., T. Tsugane, M. Watanabe, K. Yano, F. Maeda, C. Kuwata, M. Torki, Y. Ban, S. Nishimura, and D. Shibata. 2005. Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar micro-tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene 356:127-134.
  42. Young, N.D., D. Zamir, M.W. Ganal, and S.D. Tanksley. 1988. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked on the Tm-2a gene in tomato. Genetics 120:579-585.
  43. Zamir, D., I. Eksteinmichelson, Y. Zakay, N. Navot, M. Zeidan, M. Sarfatti, Y. Eshed, E. Harel, H.P. Vanoss, N. Kedar, H. Rabinowitch, and H. Czosnek. 1994. Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88:141-146.