Development of Multiplex Microsatellite Marker Set for Identification of Korean Potato Cultivars

국내 감자 품종 판별을 위한 다중 초위성체 마커 세트 개발

  • Cho, Kwang-Soo (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Won, Hong-Sik (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Hee-Jin (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Ji-Hong (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Young-Eun (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Hong, Su-Young (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration)
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 원홍식 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 정희진 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 조지홍 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 박영은 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 홍수영 (농촌진흥청 국립식량과학원 고령지농업연구센터)
  • Received : 2011.03.05
  • Accepted : 2011.06.20
  • Published : 2011.08.30

Abstract

To analyze the genetic relationships among Korean potato cultivars and to develop cultivar identification method using DNA markers, we carried out genotyping using simple sequence repeats (SSR) analysis and developed multiplex-SSR set. Initially, we designed 92 SSR primer combinations reported previously and applied them to twenty four Korean potato cultivars. Among the 92 SSR markers, we selected 14 SSR markers based on polymorphism information contents (PIC) values. PIC values of the selected 14 markers ranged from 0.48 to 0.89 with an average of 0.76. PIC value of PSSR-29 was the lowest with 0.48 and PSSR-191 was the highest with 0.89. UPGMA clustering analysis based on genetic distances using 14 SSR markers classified 21 potato cultivars into 2 clusters. Cluster I and II included 16 and 5 cultivars, respectively. And 3 cultivars were not classified into major cluster group I and II. These 14 SSR markers generated a total of 121 alleles and the average number of alleles per SSR marker was 10.8 with a range from 3 to 34. Among the selected markers, we combined three SSR markers, PSSR-17, PSSR-24 and PSSR-24, as a multiplex-SSR set. This multiplex-SSR set used in the study can distinguish all the cultivars with one time PCR and PAGE (Polyacrylamide gel electrophoresis) analysis and PIC value of multiplex-SSR set was 0.95.

국내 감자품종들의 품종간 유연관계를 분석하고 품종구분을 위한 DNA 표지인자를 개발하기 위하여 SSR(simple sequence repeats) 분석 및 다중초위성체 마커세트(multiplex-SSR set)를 개발하였다. 기존에 보고된 92개의 SSR 마커를 디자인 하고 이들을 이용하여 국내에서 육성된 24개 감자 품종에 대해 유전적 다양성을 분석하였다. 92개의 SSR 마커 중 PIC(polymorphism information contents) 값이 높은 14개의 SSR 마커를 선발하였고 PIC 값은 SSR 마커별로 0.48에서 0.89로 나타났고, 평균 값은 0.79였다. PSSR-29의 PIC 값은 0.48로 가장 낮은 값을 나타내었으며 PSSR-191에서 0.89로 가장 높은 값을 보였다. 선발된 14개의 SSR 마커를 이용하여 UPGMA 집괴분석 결과 24개의 감자 품종 중 21개의 품종이 2개의 집단으로 구분 할 수 있었으며 I 집단과 II 집단에는 각각 16개, 5개의 품종들이 군집되었으나 3개의 품종은 군집되지 않았다. 선발된 14개의 SSR 마커를 이용한 결과 24개의 품종에서 총 121개의 대립인자가 확인되었으며 각 마커별 대립인자는 3개에서 34개까지 확인되었고 평균 10.8개로 나타났다. 선발된 SSR 마커 중에서 PSSR-17, PSSR-24, PSSR-29 마커를 조합하여 다중초위성체 마커세트(multiplex-SSR set)를 개발하였다. 다중초위성체 마커세트는 한번의 PCR 반응과 PAGE 분석 만으로 본 연구에서 사용된 국내 24개의 감자 품종을 구분할 수 있었며 PIC 값은 0.95로 나타났다.

Keywords

References

  1. Anderson, J.A., G.A. Chuchill, J.E. Autrigue, and S.D. Tanksley. 1993. Optimizing parental selection for genetic linkage maps. Genome 36:181-186. https://doi.org/10.1139/g93-024
  2. Ashkenazi, V., E. Chani, U. Lavi, D. Levy, J. Hillel, and E. Veilleux. 2001. Development of microsatellite markers in potato and their use in phylogentic and fingerprinting analyses. Genome 44:50-62. https://doi.org/10.1139/gen-44-1-50
  3. Bernet, G.P., S. Bramardi, D. Calvache, E.A. Carbonell, and M.J. Asins. 2003. Applicability of molecular markers in the context of protection of new varieties of cucumber. Plant Breeding 122:146-152. https://doi.org/10.1046/j.1439-0523.2003.00838.x
  4. Braun, A. and G. Wenzel. 2004. Molecular analysis of genetic variation in potato (Solanum tuberosum L.). I. German cultivars and advanced clones. Potato Res. 47:81-92. https://doi.org/10.1007/BF02731971
  5. Chen, Y. and R.L. Nelson. 2004. Genetic variation and relationships among cultivated, wild and semiwild soybean. Crop Sci. 44:316-325. https://doi.org/10.2135/cropsci2004.0316
  6. Cho, K.H., S. Heo, H.R. Kim, J.H. Kim, I.S. Shin, S.E. Han, S.E. Kim, and D.H. Kim. 2010. Discrimination of Korean apple cultivars using combination of RAPD-SCAR markers. Kor. J. Hort. Sci. Technol. 28:828-835.
  7. Coburn, J.R., S.V. Temnykh, E.M. Paul, and S.R. McCouch. 2002. Design and application of microsatellite markers panels for semiautomated genotyping of rice (Oryza sativa L.). Crop Sci. 42:2092-2099. https://doi.org/10.2135/cropsci2002.2092
  8. Cooke, R.J. 1999. New approaches to potato variety identification. Potato Res. 42:529-539. https://doi.org/10.1007/BF02358169
  9. Del Rio, A., J. Bamberg, and Z. Huaman. 2006. Genetic equivalence of putative duplicate germplasm collections held at CIP and US potato genebanks. Amer. J. Potato Res. 83:279-285. https://doi.org/10.1007/BF02872164
  10. Feingold, S., J. Lloyd, N. Nerero, M. Bonierbale, and J. Lorenzen. 2005. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L.). Theor. Appl. Genet. 111:456-466. https://doi.org/10.1007/s00122-005-2028-2
  11. Fu, Y.B., G.W. Peterson, K.W. Richards, T.R. Tarn, and J.E. Percy. 2009. Genetic diversity of Canadian and exotic potato germplasm revealed by simple sequence repeat markers. Amer. J. Potato Res. 86:38-48. https://doi.org/10.1007/s12230-008-9059-6
  12. Ghislain, M., D. Andrade, F. Rodriguez, R.J. Hijmans, and D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tubersosum L. Phureja group using RAPDs and nuclear SSRs. Theor. Appl. Genet. 113:1515-1527. https://doi.org/10.1007/s00122-006-0399-7
  13. Hosaka, K., M. Mori, and K. Ogawa. 1994. Genetic relationships of Japanese potato cultivars assayed by RAPD analysis. Amer. J. Potato Res. 71:535-546. https://doi.org/10.1007/BF02851325
  14. Houwing, A., M. Mori, and K. Ogawa. 1986. Generation of light sprouts suitable for potato variety identification by means of artificial light. Acta Hort. 182:359-363.
  15. Jang, S.J., S.J. Park, K.H. Park, H.L. Song, Y.G. Cho, S.K. Jong, J.H. Kang, and H.S. Kim. 2009. Genetic diversity and identification of Korean elite soybean cultivars including certified cultivars based on SSR markers. Korean J. Crop Sci. 54:231-240.
  16. Jung, C.S., H.M. Griffiths, D.M. DeJong, S. Cheng, M. Bodies, T.S. Kim, and W.S. Dejong. 2009. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor. Appl. Genet. 120:45-47. https://doi.org/10.1007/s00122-009-1158-3
  17. Li, Z. and R.L. Nelson. 2001. Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Sci. 41:1337-1347. https://doi.org/10.2135/cropsci2001.4141337x
  18. Ghislain, M., J. Nunez, M. del Rosario Herrera, J. Pignataro, F. Gunzman, M. Bonierbale, and D.M. Spooner. 2009. Robust and highly informative microsatellite-based genetic identity kit for potato. Mol. Breeding 23:377-388. https://doi.org/10.1007/s11032-008-9240-0
  19. Milbourne, D., R. Meyer, A.J. Collins, L.D. Ramasy, C. Gebhardt, and R. Waugh. 1998. Isolation, characterization and mapping of simple sequence repeats loci in potato. Mol. Gen. Genet. 259:233-245. https://doi.org/10.1007/s004380050809
  20. Moisan-Thiery, M., S. Marhdour, M.C. Kerlan, N. Dessenne, M. Perramant, T. Gokelarer, and Y. Le Hingrat. 2005. Potato cultivar identification using simple sequence repeats markers (SSR). Potato Res. 48:191-200. https://doi.org/10.1007/BF02742376
  21. Norero, N., M. Julieta, H. Marcelo, and F. Sergio. 2002. Cost efficient potato cultivar identification by microsatellite amplification. Potato Res. 45:131-138. https://doi.org/10.1007/BF02736108
  22. Park, S.W., Y.S. Hyun, and K.W. Chung. 2009. Genetic polymorphism of microsatellite markers in Panax ginseng C.A. Meyer. J. Ginseng Res. 33:199-205. https://doi.org/10.5142/JGR.2009.33.3.199
  23. Pinto, L.R, K.M. Oliveira, T. Marconi, A.A.F. Garcia, E.C. Ulian, and A.P. De Souza. 2006. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breeding 125:378-384. https://doi.org/10.1111/j.1439-0523.2006.01227.x
  24. Provan, J., W. Powell, and R. Waugh. 1996. Microsatellite analysis of relationship between cultivated potato (Solanum tuberosum). Theor. Appl. Genet. 92:1078-1084. https://doi.org/10.1007/BF00224052
  25. Reid, A. and E.M. Kerrr. 2007. A rapid simple sequence repeat (SSR)-based identification method for potato cultivars. Plant Genet. Resources Characterization Utilization 5:7-13. https://doi.org/10.1017/S1479262107192133
  26. Yamanaka, S., I. Seish, I. Atsushi, L. Yushi, J.A. Watanabe, and K.N. Watanabe. 2005. Construction of integrated genetic map between various existing DNA markers and newly developed P450-related PBA markers in diploid potato (Solanum tuberosum). Breeding Sci. 55:223-230. https://doi.org/10.1270/jsbbs.55.223
  27. Yi, J.Y., H.W. Seo, O.S. Huh, Y.E. Park, J. H. Cho, and H.M. Cho. 2010. Phylogenetic analysis and association of markers and traits related to starch contents in Korean potato cultivars using SSRs. Korean J. Breed. Sci. 42:28-34.