DOI QR코드

DOI QR Code

Prediction of the Performance Distributions and Manufacturing Yields of a MEMS Accelerometer

MEMS 가속도계의 성능분포 및 제조수율 예측

  • Received : 2011.01.24
  • Accepted : 2011.04.27
  • Published : 2011.07.01

Abstract

All mechanical-system parameters have uncertainty, and this uncertainty directly affects system performances and results in a decrease in the manufacturing outputs. In particular, since the size of a MEMS system is extremely small, the manufacturing tolerances of a MEMS system are relatively large when compared to the tolerances of a macro-scale system. High manufacturing tolerances result from an increase in the uncertainty of the system parameters, thereby affecting the performances and manufacturing yields. In this paper, the performance uncertainty of a MEMS accelerometer due to system parameter uncertainty is analyzed by using several uncertainty analysis methods. Finally, the performance distributions and manufacturing yields of the MEMS accelerometer are predicted.

모든 기계 시스템의 변수는 불확실성을 가지고 이는 시스템 성능에 직접적인 영향을 미칠 뿐 아니라 생산성 감소를 야기한다. 특히 MEMS 시스템의 크기는 매우 작으므로 일반적인 기계 시스템에 비해 제조 공차는 상대적으로 커질 수 밖에 없다. 이 제조 공차에 의한 시스템 변수 불확실성은 MEMS 시스템의 성능과 제조 수율에 영향을 미친다. 본 연구에서는 두 가지의 불확실성 해석법을 이용하여 MEMS 가속도계의 시스템 변수 불확실성에 의한 성능의 불확실성 해석을 수행하고 성능분포 및 제조수율을 예측하였다.

Keywords

References

  1. Yazdi, N., Ayazi, F. and Najafi, K., 1998, " Micromachined Inertial Sensors," Proceedings of the IEEE, Vol. 86, No. 8, pp. 1640-1659. https://doi.org/10.1109/5.704269
  2. Roylance, L. M. and Angell, J. B., 1979, "A Batch-Fabricated Silicon Accelerometer," IEEE Transactions on Electron Devices, Vol. ED-26, No. 12, pp. 1895-1905.
  3. Rodulf F., 1983, "A Micromechanical Capacitive Accelerometer with a Two-point Inertial-Mass Suspension," Sensors and Actuators, Vol. 4, pp. 191-198. https://doi.org/10.1016/0250-6874(83)85024-0
  4. Kuehnel W. and Sherman S., 1994, "A Surface Micromachined Silicon Accelerometer with On-Chip Detection Circuitry," Sensors and Actuators A, Vol. 45, pp. 7-16. https://doi.org/10.1016/0924-4247(94)00815-9
  5. van Kampen R. P. and Wolffenbuttel R. F., 1998, "Modeling the Mechanical Behavior of Bulk-Micromachined Silicon Accelerometers," Sensors and Actuators A, Vol. 64, pp. 137-150. https://doi.org/10.1016/S0924-4247(98)80007-1
  6. Wang, Q. M., Yang, Z., Li, F. and Smolinski, P., 2004, "Analysis of Thin Film Piezoelectric Microaccelerometer using Analytical and Finite Element Modeling," Sensors and Actuators A, Vol. 113, pp. 1-11. https://doi.org/10.1016/j.sna.2004.02.041
  7. Puers, R. and Reyntjens, S., 1998, "Design and Processing Experiments of a New Miniaturized Capacitive Triaxial Accelerometer," Sensors and Actuators A, Vol. 68, pp. 324-328. https://doi.org/10.1016/S0924-4247(98)00032-6
  8. Amarasinghe, R., Dao, D. V., Toriyama, T. and Sugiyama, S., 2007, "Development of Miniaturized 6-Axis Accelerometer Utilizing Piezoresistive Sensing Slements," Sensors and Actuators A, Vol. 134, pp. 310-320. https://doi.org/10.1016/j.sna.2006.05.044
  9. Eckhardt, R., 1987, Stan Ulam, John von Neumann, and the Monte Carlo method, Los Alamos Science Special Issue.
  10. Hasofer, A. M. and N. C. Lind, 1974, "Exact and Invariant Second Moment Code Format," Journal of the Engineering Mechanics Division, ASCE, Vol. 100, pp. 111-121
  11. Kim, B. S., Eom, S. M., Yoo, H. H., 2009, "Design Variable Tolerance on the Natural Frequency Variance of Constrained Multi-Body Systems in Dynamic Equilibrium," Journal of Sound and Vibration, Vol. 320, pp. 545-558. https://doi.org/10.1016/j.jsv.2008.08.015
  12. Kim, Y. W. and Yoo, H. H., 2010, "Design of a Vibrating MEMS Gyroscope Considering Design Variable Uncertainties," Journal of Mechanical Science and Technology, Vol. 24, No. 11, pp.2175-2180. https://doi.org/10.1007/s12206-010-0904-4
  13. Rahman, S., Xu, H., 2004, "A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics," Probablistic Engineering Mechanics, Vol. 19, pp. 393-408. https://doi.org/10.1016/j.probengmech.2004.04.003
  14. Youn, B. D., Xi, Z., Wang, P., 2008, "Eigenvector Dimension Reduction (EDR) Method for Sensitivity-Free Probability Analysis," Struct Multidisc Optim Vol. 37, pp. 13-28. https://doi.org/10.1007/s00158-007-0210-7
  15. Bao, M., 2000, Handbook of Sensors and Actuators Volume 8 Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes. Elsevier.

Cited by

  1. Development of intelligent fault diagnostic system for mechanical element of wind power generator vol.24, pp.1, 2014, https://doi.org/10.5391/JKIIS.2014.24.1.078