DOI QR코드

DOI QR Code

Maximization of the Output Voltage of a Cantilevered Energy Harvester Comprising Piezoelectric Fiber Composites

압전섬유복합재 외팔보 에너지 회수장치의 출력전압 최대화

  • Kim, Seon-Myeong (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kim, Cheol (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 김선명 (경북대학교 기계공학부) ;
  • 김철 (경북대학교 기계공학부)
  • Received : 2011.03.15
  • Accepted : 2011.04.07
  • Published : 2011.07.01

Abstract

In this study, a cantilevered energy harvester comprising piezoelectric fiber and epoxy composites was designed and analyzed electro-mechanically. In order to maximize the power of the cantilevered energy harvester, its exciting frequency was tuned to the first natural frequency of the beam. An efficient analysis method for predicting the output voltage of the beam was developed by using the finite element method coupled with piezoelectric behavior. By using this method, the effects of geometric parameters and various piezoelectric materials on power generation were investigated and the electric characteristics were evaluated. Design optimization of the beam geometries was performed for a base model. The optimum MFC design generated a maximum electric output of 40.1 V at a first natural frequency of 24.5 Hz.

손가락형 전극과 압전섬유/에폭시 복합재료(MFC) 압전패치가 분포된 알루미늄 외팔보형의 에너지 회수장치를 설계하여 전기-기계적 특성을 연구하였다. 최대 전력을 얻기 위해서 보와 외부 가진이 공진주파수에서 진동하도록 하였다. ANSYS를 사용하여 해석기법을 개발했으며, 방법의 타당성 검증을 위해서 결과를 실험과 비교하였으며, 두 결과는 잘 일치하였다. 개발된 해석기법을 사용하여 PZT, PVDF, MFC 압전체에 의한 발생전압의 차이를 계산했으며, 압전체의 위치, 보의 치수가 성능에 미치는 영향을 연구하였다. 또한 MFC에 의한 최대 전압발생을 위해서 보의 치수에 대한 최적화가 수행되었으며, 그 결과 최적화된 보에서 1차고유진동수 24.5Hz에서 40.1V의 전압이 발생했으며 이 값은 PZT의 결과와 비슷하다. 그러나 압전섬유형 회수장치는 PZT보다 더 높은 내구수명이 기대되어 유리하다.

Keywords

References

  1. Roundy, S., Wright, P. and Rabaey, J., 2003, "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes," Comput. Commun., Vol. 26, No. 11, pp. 1131-1144. https://doi.org/10.1016/S0140-3664(02)00248-7
  2. Mitchson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S. and Green, T. C., 2008, "Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices," Proc. IEEE, Vol. 96, No. 9, pp. 1457-1468. https://doi.org/10.1109/JPROC.2008.927494
  3. Priya, S., 2007, "Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers," J. Electroceram., Vol. 19, pp. 165-182.
  4. Glynne-Jones, P. and white, N. M., 2001, "Self-Powered Systes: A Review of Energy Sources," Sensor Review, Vol. 21, pp. 91-97. https://doi.org/10.1108/02602280110388252
  5. Paradiso, J. A. and Starner, T. 2005, "Energy Scavenging for Mobile and Wireless Electronics," Pervasive Computing, IEEE CS and IEEE ComSoc, Vol 4, No. 1, pp. 18-27. https://doi.org/10.1109/MPRV.2005.9
  6. Beeby, S. P. Tudor, M. J. and White, N. M., 2006, "Energy Harvesting Vibration Sources for Microsystems Applications," Meas. Sci. Tech., Vol. 17, p. 175. https://doi.org/10.1088/0957-0233/17/12/R01
  7. Yang, Y., Tang, L. and Li, H., 2009, "Vibration Energy Harvesting Using Macro-Fiber Composites," Smart Mater. Struct., Vol. 18, No. 11, p. 115025. https://doi.org/10.1088/0964-1726/18/11/115025
  8. ANSYS, ANSYS Release 11.0 documentation.
  9. Williams, B. R., Grimsley, B. W., Inman, D. J. and Wilkie, W. K., 2002, "An Overview of Composite Actuators with Piezoceramic Fibers," Proc. 20th Int'l Modal Analysis Conference, L.A., USA.
  10. Deraemaeker, A., Nasser, H., Benjeddou, A. and Preumont, A., 2009, "Mixing Rules for the Piezoelectric Properties of Macro Fiber Composites, J. Intel. Mat. Sys. Str., Vol. 20, No. 12, pp. 1475-1482. https://doi.org/10.1177/1045389X09335615