DOI QR코드

DOI QR Code

Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review

  • Khan, Shafi Ullah (Department of Mechanical Engineering, Hong Kong University of Science and Technology Clear Water Bay Kowloon) ;
  • Kim, Jang-Kyo (Department of Mechanical Engineering, Hong Kong University of Science and Technology Clear Water Bay Kowloon)
  • Published : 2011.06.30

Abstract

Fiber reinforced polymer composites (FRPs) are being increasingly used for a wide range of engineering applications owing to their high specific strength and stiffness. However, their through-the-thickness performance lacks some of the most demanding physical and mechanical property requirements for structural applications, such as aerospace vehicles and military components. Carbon nanotubes (CNTs) and carbon nanofibers (CNFs), due to their excellent mechanical, thermal and electrical properties, offer great promise to improve the weak properties in the thickness direction and impart multi-functionality without substantial weight addition to FRPs. This paper reviews the progress made to date on i) the techniques developed for integration of CNTs/ CNFs into FRPs, and ii) the effects of the addition of these nanofillers on the interlaminar properties, such as such interlaminar shear strength, interlaminar fracture toughness and impact damage resistance and tolerance, of FRPs. The key challenges and future prospects in the development of multiscale CNT-FRP composites for advanced applications are also highlighted.

Keywords

References

  1. Abe, T., Hayashi, K., Sato, T., Yamane, S., and Hirokawa, T. (2003). A-VARTM process and z-anchor technology for primary aircraft structures. Proceedings of the 24th SAMPE Europe International Conference, Paris, France.
  2. Abot, J. L., Song, Y., Schulz, M. J., and Shanov, V. N.(2008). Novel carbon nanotube array-reinforced laminated composite materials with higher interlaminar elastic properties. Composites Science and Technology, 68, 2755- 2760. https://doi.org/10.1016/j.compscitech.2008.05.023
  3. Abrate, S. (1991). Impact on laminated composite materials. Applied Mechanics Reviews, 44, 155-190. https://doi.org/10.1115/1.3119500
  4. Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 265, 1212- 1214. https://doi.org/10.1126/science.265.5176.1212
  5. Arai, M., Noro, Y., Sugimoto, K. i., and Endo, M. (2008). Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Composites Science and Technology, 68, 516-525. https://doi.org/10.1016/j.compscitech.2007.06.007
  6. Avila, A. F., Soares, M. I., and Silva Neto, A. (2007). A study on nanostructured laminated plates behavior under lowvelocity impact loadings. International Journal of Impact Engineering, 34, 28-41. https://doi.org/10.1016/j.ijimpeng.2006.06.009
  7. Barbezat, M., Brunner, A. J., Necola, A., Rees, M., Gasser, P., and Terrasi, G. (2009). Fracture behavior of GFRP laminates with nanocomposite epoxy resin matrix. Journal of Composite Materials, 43, 959-976. https://doi.org/10.1177/0021998308100799
  8. Bekyarova, E., Thostenson, E. T., Yu, A., Kim, H., Gao, J., Tang, J., Hahn, H. T., Chou, T. W., Itkis, M. E., and Haddon, R. C. (2007). Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir, 23, 3970-3974. https://doi.org/10.1021/la062743p
  9. Bethune, D. S., Kiang, C. H., De Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607. https://doi.org/10.1038/363605a0
  10. Bhuiyan, M. A., Hosur, M. V., and Jeelani, S. (2009). Lowvelocity impact response of sandwich composites with nanophased foam core and biaxial (${\times}45^{\circ}C$) braided face sheets. Composites Part B: Engineering, 40, 561-571. https://doi.org/10.1016/j.compositesb.2009.03.010
  11. Bibo, G. A. and Hogg, P. J. (1996). The role of reinforcement architecture on impact damage mechanisms and postimpact compression behaviour. Journal of Materials Science, 31, 1115-1137. https://doi.org/10.1007/BF00353091
  12. Blanco, J., Garcia, E. J., Guzman De Villoria, R., and Wardle, B. L. (2009). Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials, 43, 825-841. https://doi.org/10.1177/0021998309102398
  13. Brown, R. T. and Crow, E. C., Jr. (1992). Automatic throughthe- thickness braiding. The 37th International SAMPE Symposium and Exhibition, Anaheim, CA. pp. 832-842.
  14. Cantwell, W. J. and Morton, J. (1991). The impact resistance of composite materials-a review. Composites, 22, 347-362. https://doi.org/10.1016/0010-4361(91)90549-V
  15. Cesano, F., Bertarione, S., Scarano, D., and Zecchina, A. (2005). Connecting carbon fibers by means of catalytically grown nanofilaments: formation of carbon-carbon composites. Chemistry of Materials, 17, 5119-5123. https://doi.org/10.1021/cm050427a
  16. Chandrasekaran, V. C. S., Advani, S. G., and Santare, M. H. (2010). Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites. Carbon, 48, 3692-3699. https://doi.org/10.1016/j.carbon.2010.06.010
  17. Chang, P., Mouritz, A. P., and Cox, B. N. (2007). Flexural properties of z-pinned laminates. Composites Part A: Applied Science and Manufacturing, 38, 244-251. https://doi.org/10.1016/j.compositesa.2006.05.004
  18. Choi, J. S., Lim, S. T., Choi, H. J., Hong, S. M., Mohanty, A. K., Drzal, L. T., Misra, M., and Wibowo, A. C. (2005). Rheological, thermal, and morphological characteristics of plasticized cellulose acetate composite with natural fibers. Macromolecular Symposia, 224, 297-307. https://doi.org/10.1002/masy.200550626
  19. Davis, D. C. and Whelan, B. D. (2011). An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite. Composites Part B: Engineering, 42, 105-116. https://doi.org/10.1016/j.compositesb.2010.06.001
  20. Dickinson, L. C., Farley, G. L., and Hinders, M. K. (1999). Prediction of effective three-dimensional elastic constants of translaminar reinforced composites. Journal of Composite Materials, 33, 1002-1029. https://doi.org/10.1177/002199839903301104
  21. Donnet, J. B., Wang, T. K., Peng, J. C. M., and Rebouillat, S. (1998). Carbon Fibers. 3rd ed. New York: Marcel Dekker.
  22. Downs, W. B. and Baker, R. T. K. (1995). Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers. Journal of Materials Research, 10, 625-633. https://doi.org/10.1557/JMR.1995.0625
  23. Dransfield, K., Baillie, C., and Mai, Y. W. (1994). Improving the delamination resistance of CFRP by stitching-a review. Composites Science and Technology, 50, 305-317. https://doi.org/10.1016/0266-3538(94)90019-1
  24. Dransfield, K. A., Jain, L. K., and Mai, Y. W. (1998). On the effects of stitching in CFRPs-I. Mode I delamination toughness. Composites Science and Technology, 58, 815-827. https://doi.org/10.1016/S0266-3538(97)00229-7
  25. Du, J. H., Bai, J., and Cheng, H. M. (2007). The present status and key problems of carbon nanotube based polymer composites. Express Polymer Letters, 1, 253-273. https://doi.org/10.3144/expresspolymlett.2007.39
  26. Fan, Z. and Advani, S. G. (2005). Characterization of orientation state of carbon nanotubes in shear flow. Polymer, 46, 5232-5240. https://doi.org/10.1016/j.polymer.2005.04.008
  27. Fan, Z., Santare, M. H., and Advani, S. G. (2008). Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 540-554. https://doi.org/10.1016/j.compositesa.2007.11.013
  28. Fiedler, B., Gojny, F. H., Wichmann, M. H. G., Nolte, M. C. M., and Schulte, K. (2006). Fundamental aspects of nanoreinforced composites. Composites Science and Technology, 66, 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
  29. Ganguli, S., Bhuyan, M., Allie, L., and Aglan, H. (2005). Effect of multi-walled carbon nanotube reinforcement on the fracture behavior of a tetrafunctional epoxy. Journal of Materials Science, 40, 3593-3595. https://doi.org/10.1007/s10853-005-2891-x
  30. Garcia, E. J., Wardle, B. L., and John Hart, A. (2008a). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 39, 1065-1070. https://doi.org/10.1016/j.compositesa.2008.03.011
  31. Garcia, E. J., Wardle, B. L., John Hart, A., and Yamamoto, N. (2008b). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ. Composites Science and Technology, 68, 2034-2041. https://doi.org/10.1016/j.compscitech.2008.02.028
  32. Godara, A., Mezzo, L., Luizi, F., Warrier, A., Lomov, S. V., van Vuure, A. W., Gorbatikh, L., Moldenaers, P., and Verpoest, I. (2009). Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/ epoxy composites. Carbon, 47, 2914-2923. https://doi.org/10.1016/j.carbon.2009.06.039
  33. Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Bauhofer, W., and Schulte, K. (2005a). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites Part A: Applied Science and Manufacturing, 36, 1525-1535. https://doi.org/10.1016/j.compositesa.2005.02.007
  34. Gojny, F. H., Wichmann, M. H. G., Fiedler, B., and Schulte, K. (2005b). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-a comparative study. Composites Science and Technology, 65, 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021
  35. Green, K. J., Dean, D. R., Vaidya, U. K., and Nyairo, E. (2009). Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part A: Applied Science and Manufacturing, 40, 1470-1475. https://doi.org/10.1016/j.compositesa.2009.05.010
  36. Gryshchuk, O., Karger-Kocsis, J., Thomann, R., Konya, Z., and Kiricsi, I. (2006). Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Composites Part A: Applied Science and Manufacturing, 37, 1252-1259. https://doi.org/10.1016/j.compositesa.2005.09.003
  37. Hirai, Y., Hamada, H., and Kim, J. K. (1998a). Impact response of woven glass-fabric composites - I. Effect of fibre surface treatment. Composites Science and Technology, 58, 91-104. https://doi.org/10.1016/S0266-3538(97)00111-5
  38. Hirai, Y., Hamada, H., and Kim, J. K. (1998b). Impact response of woven glass-fabric composites - II. Effect of temperature. Composites Science and Technology, 58, 119- 128. https://doi.org/10.1016/S0266-3538(97)00112-7
  39. Hiroi, R., Ray, S. S., Okamoto, M., and Shiroi, T. (2004). Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromolecular Rapid Communications, 25, 1359-1364. https://doi.org/10.1002/marc.200400173
  40. Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S., and Endo, Y. (2006a). Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf. International Journal of Fatigue, 28, 1154-1165. https://doi.org/10.1016/j.ijfatigue.2006.02.004
  41. Hojo, M., Matsuda, S., Tanaka, M., Ochiai, S., and Murakami, A. (2006b). Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates. Composites Science and Technology, 66, 665-675. https://doi.org/10.1016/j.compscitech.2005.07.038
  42. Hosur, M. V., Mohammed, A. A., Zainuddin, S., and Jeelani, S. (2008). Processing of nanoclay filled sandwich composites and their response to low-velocity impact loading. Composite Structures, 82, 101-116. https://doi.org/10.1016/j.compstruct.2006.12.009
  43. Hsiao, K. T., Alms, J., and Advani, S. G. (2003). Use of epoxy/ multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology, 14, 791-793. https://doi.org/10.1088/0957-4484/14/7/316
  44. Hung, K. H., Tzeng, S. S., Kuo, W. S., Wei, B., and Ko, T. H. (2008). Growth of carbon nanofibers on carbon fabric with Ni nanocatalyst prepared using pulse electrodeposition. Nanotechnology, 19, 295602. https://doi.org/10.1088/0957-4484/19/29/295602
  45. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  46. Inam, F., Wong, D. W. Y., Kuwata, M., and Peijs, T. (2010). Multiscale hybrid micro-nanocomposites based on carbon nanotubes and carbon fibers. Journal of Nanomaterials, 2010, 453420.
  47. Iqbal, K., Khan, S. U., Munir, A., and Kim, J. K. (2009). Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology, 69, 1949- 1957. https://doi.org/10.1016/j.compscitech.2009.04.016
  48. Isayev, A. I., Kumar, R., and Lewis, T. M. (2009). Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes. Polymer, 50, 250-260. https://doi.org/10.1016/j.polymer.2008.10.052
  49. Joshi, M. and Butola, B. S. (2004). Polymeric nanocomposites-polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. Journal of Macromolecular Science-Polymer Reviews, 44, 389-410. https://doi.org/10.1081/MC-200033687
  50. Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., and Paipetis, A. (2009). Enhanced fracture properties of carbon reinforced composites by the addition of multi-wall carbon nanotubes. Journal of Composite Materials, 43, 977- 985. https://doi.org/10.1177/0021998308097735
  51. Kepple, K. L., Sanborn, G. P., Lacasse, P. A., Gruenberg, K. M., and Ready, W. J. (2008). Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon, 46, 2026-2033. https://doi.org/10.1016/j.carbon.2008.08.010
  52. Khan, S. U., Iqbal, K., Munir, A., and Kim, J. K. (2011a). Quasi-static and impact fracture behaviors of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 42, 253-264. https://doi.org/10.1016/j.compositesa.2010.11.011
  53. Khan, S. U. and Kim, J. K. (2011). Interlaminar shear properties of CFRP composites with CNF-bucky paper interleaves. The 18th International Conference on Composite Materials, Jeju, Korea.
  54. Khan, S. U., Li, C. Y., Siddiqui, N. A., and Kim, J. K. (2011b). Vibration damping characteristics of carbon fiber-reinforced composite containing multi-walled carbon nanotubes. Composites Science and Technology In press.
  55. Khan, S. U., Munir, A., Hussain, R., and Kim, J. K. (2010). Fatigue damage behaviors of carbon fiber-reinforced epoxy composites containing nanoclay. Composites Science and Technology, 70, 2077-2085. https://doi.org/10.1016/j.compscitech.2010.08.004
  56. Kim, J. K., Baillie, C., Poh, J., and Mai, Y. W. (1992). Fracture toughness of CFRP with modified epoxy resin matrices. Composites Science and Technology, 43, 283-297. https://doi.org/10.1016/0266-3538(92)90099-O
  57. Kim, J. K. (1998). Methods for improving impact damage resistance of CFRPs. Key Engineering Materials, 141-143, 149-168. https://doi.org/10.4028/www.scientific.net/KEM.141-143.149
  58. Kim, J. K., MacKay, D. B., and Mai, Y. W. (1993). Dropweight impact damage tolerance of CFRP with rubbermodified epoxy matrix. Composites, 24, 485-494. https://doi.org/10.1016/0010-4361(93)90018-4
  59. Kim, J. K. and Mai, Y. W. (1998). Engineered Interfaces in Fiber Reinforced Composites. 1st ed. New York: Elsevier Sciences.
  60. Kim, J. K. and Sham, M. L. (2000). Impact and delamination failure of woven-fabric composites. Composites Science and Technology, 60, 745-761. https://doi.org/10.1016/S0266-3538(99)00166-9
  61. Kostopoulos, V., Baltopoulos, A., Karapappas, P., Vavouliotis, A., and Paipetis, A. (2010). Impact and afterimpact properties of carbon fibre reinforced composites enhanced with multi-wall carbon nanotubes. Composites Science and Technology, 70, 553-563. https://doi.org/10.1016/j.compscitech.2009.11.023
  62. Li, J. and Kim, J. K. (2007). Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites Science and Technology, 67, 2114-2120. https://doi.org/10.1016/j.compscitech.2006.11.010
  63. Li, Y., Hori, N., Arai, M., Hu, N., Liu, Y., and Fukunaga, H. (2009). Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Composites Part A: Applied Science and Manufacturing, 40, 2004-2012. https://doi.org/10.1016/j.compositesa.2009.09.002
  64. Liao, F. S., Su, A. C., and Hsu, T. C. J. (1994). Vibration damping of interleaved carbon fiber-epoxy composite beams. Journal of Composite Materials, 28, 1840-1854. https://doi.org/10.1177/002199839402801806
  65. Ma, P. C. and Kim, J. K. (2011). Carbon Nanotubes for Polymer Reinforcement. Boca Raton, FL: Taylor & Francis.
  66. Ma, P. C., Kim, J. K., and Tang, B. Z. (2007). Effects of silane functionalization on the properties of carbon nanotube/ epoxy nanocomposites. Composites Science and Technology, 67, 2965-2972. https://doi.org/10.1016/j.compscitech.2007.05.006
  67. Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41, 1345-1367. https://doi.org/10.1016/j.compositesa.2010.07.003
  68. Ma, P. C., Wang, S. Q., Kim, J. K., and Tang, B. Z. (2009). In-situ amino functionalization of carbon nanotubes using ball milling. Journal of Nanoscience and Nanotechnology, 9, 749-753. https://doi.org/10.1166/jnn.2009.C017
  69. Meguid, S. A. and Sun, Y. (2004). On the tensile and shear strength of nano-reinforced composite interfaces. Materials and Design, 25, 289-296. https://doi.org/10.1016/j.matdes.2003.10.018
  70. Mohanty, A. K., Wibowo, A., Misra, M., and Drzal, L. T. (2003). Development of Renewable Resource-Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics. Polymer Engineering and Science, 43, 1151-1161. https://doi.org/10.1002/pen.10097
  71. Moniruzzaman, M., Du, F., Romero, N., and Winey, K. I. (2006). Increased flexural modulus and strength in SWNT/ epoxy composites by a new fabrication method. Polymer, 47, 293-298. https://doi.org/10.1016/j.polymer.2005.11.011
  72. Mouritz, A. P. (2007). Review of z-pinned composite laminates. Composites Part A: Applied Science and Manufacturing, 38, 2383-2397. https://doi.org/10.1016/j.compositesa.2007.08.016
  73. Mouritz, A. P., Bannister, M. K., Falzon, P. J., and Leong, K. H. (1999). Review of applications for advanced threedimensional fibre textile composites. Composites Part A: Applied Science and Manufacturing, 30, 1445-1461. https://doi.org/10.1016/S1359-835X(99)00034-2
  74. Mylavarapu, P. and Woldesenbet, E. (2010). Effect of nanoclay incorporation on the impact properties of adhesively bonded composite structures. Journal of Adhesion Science and Technology, 24, 389-405. https://doi.org/10.1163/016942409X12541266699554
  75. Nussbaumer, R. J., Caseri, W. R., and Smith, P. (2006). Reversible photochromic properties of TiO2-polymer nanocomposites. Journal of Nanoscience and Nanotechnology, 6, 459-463. https://doi.org/10.1166/jnn.2006.923
  76. Qian, H., Bismarck, A., Greenhalgh, E. S., Kalinka, G., and Shaffer, M. S. P. (2008). Hierarchical composites reinforced with carbon nanotube grafted fibers: The potential assessed at the single fiber level. Chemistry of Materials, 20, 1862- 1869. https://doi.org/10.1021/cm702782j
  77. Qiu, J., Zhang, C., Wang, B., and Liang, R. (2007). Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology, 18, 275708. https://doi.org/10.1088/0957-4484/18/27/275708
  78. Rao, C. N. R., Deepak, F. L., Gundiah, G., and Govindaraj, A. (2003). Inorganic nanowires. Progress in Solid State Chemistry, 31, 5-147. https://doi.org/10.1016/j.progsolidstchem.2003.08.001
  79. Reeder, J. R. (1995). Stitching vs. a toughened matrix: compression strength effects. Journal of Composite Materials, 29, 2464-2487. https://doi.org/10.1177/002199839502901805
  80. Rojas-Chapana, J. A. and Giersig, M. (2006). Multi-walled carbon nanotubes and metallic nanoparticles and their application in biomedicine. Journal of Nanoscience and Nanotechnology, 6, 316-321. https://doi.org/10.1166/jnn.2006.905
  81. Romhany, G. and Szebenyi, G. (2009). Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites. Express Polymer Letters, 3, 145-151. https://doi.org/10.3144/expresspolymlett.2009.19
  82. Sadeghian, R., Gangireddy, S., Minaie, B., and Hsiao, K. T. (2006). Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the mode-I delamination resistance. Composites Part A: Applied Science and Manufacturing, 37, 1787-1795. https://doi.org/10.1016/j.compositesa.2005.09.010
  83. Sager, R. J., Klein, P. J., Lagoudas, D. C., Zhang, Q., Liu, J., Dai, L., and Baur, J. W. (2009). Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Composites Science and Technology, 69, 898-904. https://doi.org/10.1016/j.compscitech.2008.12.021
  84. Siddiqui, N. A., Khan, S. U., Li, C. Y., Ma, P. C., and Kim, J. K. (2011). Manufacturing and characterization of CFRP prepregs containing carbon nanotubes. Composites Part A: Applied Science and Manufacturing In press.
  85. Siddiqui, N. A., Woo, R. S. C., Kim, J. K., Leung, C. C. K., and Munir, A. (2007). Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 38, 449-460. https://doi.org/10.1016/j.compositesa.2006.03.001
  86. Singh, S. and Partridge, I. K. (1995). Mixed-mode fracture in an interleaved carbon-fibre/epoxy composite. Composites Science and Technology, 55, 319-327. https://doi.org/10.1016/0266-3538(95)00062-3
  87. Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science (Oxford), 35, 357-401. https://doi.org/10.1016/j.progpolymsci.2009.09.003
  88. Steeves, C. A. and Fleck, N. A. (2006). In-plane properties of composite laminates with through-thickness pin reinforcement. International Journal of Solids and Structures, 43, 3197-3212. https://doi.org/10.1016/j.ijsolstr.2005.05.017
  89. Sun, L., Warren, G. L., and Sue, H. J. (2010). Partially cured epoxy/SWCNT thin films for the reinforcement of vacuumassisted resin-transfer-molded composites. Carbon, 48, 2364-2367. https://doi.org/10.1016/j.carbon.2010.02.027
  90. Thostenson, E. T., Li, W. Z., Wang, D. Z., Ren, Z. F., and Chou, T. W. (2002). Carbon nanotube/carbon fiber hybrid multiscale composites. Journal of Applied Physics, 91, 6034- 6037. https://doi.org/10.1063/1.1466880
  91. Thostenson, E. T., Ren, Z., and Chou, T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
  92. Tjong, S. C. (2006). Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R: Reports, 53, 73-197. https://doi.org/10.1016/j.mser.2006.06.001
  93. Tong, L., Mouritz, A. P., and Bannister, M. K. (2002). 3D Fibre Reinforced Polymer Composites. Boston: Elsevier. pp. 1-12.
  94. Tong, L., Sun, X., and Tan, P. (2008). Effect of long multiwalled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials, 42, 5-23. https://doi.org/10.1177/0021998307086186
  95. Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T., and Friedrich, K. (2007). On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Composites Part A: Applied Science and Manufacturing, 38, 1159-1162. https://doi.org/10.1016/j.compositesa.2006.04.016
  96. Tugrul Seyhan, A., Tanoglu, M., and Schulte, K. (2008). Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Engineering Fracture Mechanics, 75, 5151-5162. https://doi.org/10.1016/j.engfracmech.2008.08.003
  97. Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P. M., and Ghasemi-Nejhad, M. N. (2006). Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Materials, 5, 457-462. https://doi.org/10.1038/nmat1650
  98. Wang, S. J., Geng, Y., Zheng, Q., and Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815-1823. https://doi.org/10.1016/j.carbon.2010.01.027
  99. Warrier, A., Godara, A., Rochez, O., Mezzo, L., Luizi, F., Gorbatikh, L., Lomov, S. V., VanVuure, A. W., and Verpoest, I. (2010). The effect of adding carbon nanotubes to glass/epoxy composites in the fibre sizing and/or the matrix. Composites Part A: Applied Science and Manufacturing, 41, 532-538. https://doi.org/10.1016/j.compositesa.2010.01.001
  100. Wichmann, M. H. G., Sumfleth, J., Gojny, F. H., Quaresimin, M., Fiedler, B., and Schulte, K. (2006). Glass-fibre-reinforced composites with enhanced mechanical and electrical properties - Benefits and limitations of a nanoparticle modified matrix. Engineering Fracture Mechanics, 73, 2346- 2359. https://doi.org/10.1016/j.engfracmech.2006.05.015
  101. Wicks, S. S., de Villoria, R. G., and Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology, 70, 20-28. https://doi.org/10.1016/j.compscitech.2009.09.001
  102. Woldesenbet, E. (2008). Low velocity impact properties of nanoparticulate syntactic foams. Materials Science and Engineering A, 496, 217-222. https://doi.org/10.1016/j.msea.2008.05.024
  103. Yamamoto, N., John Hart, A., Garcia, E. J., Wicks, S. S., Duong, H. M., Slocum, A. H., and Wardle, B. L. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon, 47, 551- 560. https://doi.org/10.1016/j.carbon.2008.10.030
  104. Yokozeki, T., Iwahori, Y., Ishiwata, S., and Enomoto, K. (2007). Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNTdispersed epoxy. Composites Part A: Applied Science and Manufacturing, 38, 2121-2130. https://doi.org/10.1016/j.compositesa.2007.07.002
  105. Zhang, X., Cao, A., Li, Y., Xu, C., Liang, J., Wu, D., and Wei, B. (2002). Self-organized arrays of carbon nanotube ropes. Chemical Physics Letters, 351, 183-188. https://doi.org/10.1016/S0009-2614(01)01348-3
  106. Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V. N., and Barrera, E. V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 67, 1509-1517. https://doi.org/10.1016/j.compscitech.2006.07.018
  107. Zhu, S., Su, C. H., Lehoczky, S. L., Muntele, I., and Ila, D. (2003). Carbon nanotube growth on carbon fibers. Diamond and Related Materials, 12, 1825-1828. https://doi.org/10.1016/S0925-9635(03)00205-X

Cited by

  1. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers vol.9, pp.3, 2017, https://doi.org/10.1021/acsami.6b13397
  2. Hybrid Woven Glass Fibre Fabric-Multi-Walled Carbon Nanotube-Epoxy Composites Under Low Rate Impact vol.1, pp.1, 2017, https://doi.org/10.3390/jcs1010010
  3. Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites vol.9, pp.41, 2017, https://doi.org/10.1021/acsami.7b11712
  4. Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: A review vol.87, pp.18, 2017, https://doi.org/10.1177/0040517516669075
  5. Manufacturing and Shear Response Characterization of Carbon Nanofiber Modified CFRP Using the Out-of-Autoclave-Vacuum-Bag-Only Cure Process vol.2014, 2014, https://doi.org/10.1155/2014/830295
  6. Synthesis of Carbon Nanofibers on Large Woven Cloth vol.1, pp.1, 2015, https://doi.org/10.3390/c1010002
  7. Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites vol.38, pp.8, 2013, https://doi.org/10.1016/j.progpolymsci.2013.04.001
  8. Tailor Made Conductivities of Polymer Matrix for Thermal Management: Design and Development of Three-Dimensional Carbonaceous Nanostructures vol.56, pp.3, 2017, https://doi.org/10.1021/acs.iecr.6b03245
  9. Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties vol.66, 2014, https://doi.org/10.1016/j.compositesb.2014.06.010
  10. Nano-engineered composites: interlayer carbon nanotubes effect vol.16, pp.3, 2013, https://doi.org/10.1590/S1516-14392013005000034
  11. Improving compression-after-impact performance of carbon–fiber composites by CNTs/thermoplastic hybrid film interlayer vol.95, 2014, https://doi.org/10.1016/j.compscitech.2014.01.023
  12. On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes–enhanced matrix vol.35, pp.5, 2016, https://doi.org/10.1177/0731684415619493
  13. The influence of graphene reinforced electrospun nano-interlayers on quasi-static indentation behavior of fiber-reinforced epoxy composites vol.18, pp.2, 2017, https://doi.org/10.1007/s12221-017-6700-3
  14. Multifunctional fiber reinforced polymer composites using carbon and boron nitride nanotubes vol.141, 2017, https://doi.org/10.1016/j.actaastro.2017.09.023
  15. Experimental determination of fracture toughness properties of nanostitched and nanoprepreg carbon/epoxy composites 2017, https://doi.org/10.1016/j.engfracmech.2017.11.033
  16. Mechanical and Electrical Characterization of Carbon Fiber/Bucky Paper/Zinc Oxide Hybrid Composites vol.4, pp.1, 2018, https://doi.org/10.3390/c4010006
  17. Enhanced delamination resistance of thick-section glass-epoxy composite laminates using compliant thermoplastic polyurethane interlayers 2018, https://doi.org/10.1016/j.compstruct.2018.01.062
  18. Low-Velocity Impact and Residual Burst-Pressure Analysis of Cylindrical Composite Pressure Vessels vol.50, pp.10, 2012, https://doi.org/10.2514/1.J051515
  19. Electromagnetic Shielding Effectiveness of a Hybrid Carbon Nanotube/Glass Fiber Reinforced Polymer Composite vol.138, pp.4, 2016, https://doi.org/10.1115/1.4033576
  20. Interlaminar shear properties of nanostitched/nanoprepreg aramid/phenolic composites by short beam method pp.1530-793X, 2018, https://doi.org/10.1177/0021998318811523
  21. Mechanical and Thermal Properties of Multi-scale Carbon Nanotubes–Carbon Fiber–Epoxy Composite vol.43, pp.11, 2018, https://doi.org/10.1007/s13369-018-3091-8
  22. Critical review of the factors dominating the fracture toughness of CNT reinforced polymer composites vol.6, pp.1, 2018, https://doi.org/10.1088/2053-1591/aae867
  23. Tensile characterization of 3D nanostitched p-aramid/phenolic MWCNTs composites vol.406, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/406/1/012032
  24. Fracture Toughness (Mode-I) of Para-Aramid/Phenolic Nano Preform Composites vol.25, pp.4, 2018, https://doi.org/10.1007/s10443-018-9709-x
  25. Mechanical Properties of Thermoplastic and Thermoset Composites Reinforced with 3D Biaxial Warp-knitted Fabrics vol.25, pp.4, 2018, https://doi.org/10.1007/s10443-018-9725-x
  26. Interlaminar fracture toughness of hybrid carbon fiber-carbon nanotubes-reinforced polymer composites pp.02728397, 2019, https://doi.org/10.1002/pc.25054
  27. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate vol.5, pp.5, 2018, https://doi.org/10.1088/2053-1591/aac1cf
  28. Deformability of a woven fabric modified with in-situ grown nanofibres vol.11, pp.5, 2018, https://doi.org/10.1007/s12289-017-1384-1
  29. Flexural characterization of 3D prepreg/stitched carbon/epoxy/multiwalled carbon nanotube preforms and composites pp.1530-793X, 2018, https://doi.org/10.1177/0021998318787861
  30. Structure - Impact properties relationships of carbon fiber reinforced poly(methyl methacrylate) composite vol.40, pp.S1, 2019, https://doi.org/10.1002/pc.24665