DOI QR코드

DOI QR Code

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells

치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과

  • Received : 2011.03.29
  • Accepted : 2011.06.10
  • Published : 2011.07.31

Abstract

[ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.

치마버섯에서 추출한 베타글루칸을 Raw 264.7 세포에 처치한 후 MTT assay로 측정한 결과 베타글루칸 400 ${\mu}g$/mL까지에 의한 세포독성은 없었다. 대식세포의 활성능을 측정하기 위해서 Raw 264.7 세포에서 NO와 TNF-${\alpha}$의 생성을 측정하였다. 베타글루칸을 대식세포에 24시간 처리한 결과 대조군과 비교 시 NO와 TNF-${\alpha}$가 유의적으로 상승하였다. 이 결과 베타글루칸이 대식세포인 Raw 264.7 세포를 활성화 시키는 것으로 사료된다. 따라서 본 실험에 사용된 베타글루칸은 면역강화용 사료첨가제로서의 의미가 충분하다고 사료된다. MDA-MB-231 유방암 세포의 성장을 저해하는지 확인하기 위하여 MTT assay를 시행하였다. 400 ${\mu}g$/mL 베타글루칸을 48시간 처리한 결과 대조군과 비교 시 유방암 세포의 성장이 유의적으로 억제하였다. 그리고 베타글루칸이 유방암 세포에서 성장 억제 효과를 알아보기 위해 누드마우스에 MDA-MB-231 유방암 세포를 접종하였다. 베타글루칸의 용량은 대조군(0 ${\mu}g$/mouse), 저용량(200 ${\mu}g$/mouse), 고용량(400 ${\mu}g$/mouse)으로 설정하여 누드마우스에 경구투여 하였다. 이 결과 저용량군(200 ${\mu}g$/mouse)이 고용량군(400 ${\mu}g$/mouse)보다 항암효능이 더 많이 일어나는 것을 확인하였다. MDA-MB-231 유방암 세포주에서 베타글루칸이 종양 성장이 감소하였지만, 그 결과가 유의적인 차이를 보이지 않아 본 연구에서 사용한 용량에서는 베타글루칸이 MDA-MB-231 유방암 세포주에서 종양 성장을 유의적으로 억제하지 않는 것으로 사료된다. 조직병리학적 검사에서 독성이 무해한 것으로 판단되어 면역강화용 사료첨가제로 사용하여도 무방할 것으로 사료된다.

Keywords

References

  1. Kim KJ. 2010. Optimization for $\beta$-glucan extraction form Sparassis crispa using response surface methodology. MS Thesis. Hanyang University, Seoul, Korea.
  2. Daba AS, Ezeronye OU. 2003. Anti-cancer effect of polysaccharides isolated from higher basidiomycetes mushrooms. Afr J Biotechnol 2: 672-678.
  3. Jong SC, Birmingham JM, Pai SH. 1991. Immunomodulatory substances of fungal origin. J Immunol Immunophamacol 11: 115-122.
  4. Cho YJ, Km HA, Bang MA, Kim EH. 2002. Effects of dietary mushroom on blood glucose levels, lipid concentrations and glutathione enzymes in streptozotocin-induced diabetic rats. J Nutr 35: 183-191.
  5. Kim HJ, Kim HJ, Jun BS, Cha JY, Kim HK, Cho YS. 2001. Analysis of $\gamma$-aminobutyric acid concentrations in Korean plants and mushrooms. J Life Sci 11: 537-542.
  6. Shin HJ, Oh DS, Lee HD, Kang HB, Lee CW, Cha WS. 2007. Analysis of mineral, amino acid and vitamin contents of fruiting body of Sparassis crispa. J Life Sci 17: 1290-1293. https://doi.org/10.5352/JLS.2007.17.9.1290
  7. Yim SB, Kim MO, Kim SJ. 1991. Determination of dietary fiber contents in mushrooms. J Food Sci 7: 69-76.
  8. Ham SS, Oh SW, Kim YK, Shin KS. 2003. Antimutagenic and cytotoxic effects of ethanol extract from the Inonotus obliquus. J Nutr 34: 1088-1094. https://doi.org/10.3746/jkfn.2003.32.7.1088
  9. Kim HG, Lee IS. 2004. Antimutagenic and cytotoxic effects of Korean wild mushrooms extracts. Korean J Food Sci Technol 36: 662-668.
  10. Lee YS, Han JY, Joo EY, Shin SR, Kim NW. 2005. Study on the anti-tumor effects of extracts from Lepista nuda mushroom. J Korean Soc Food Sci Nurt 34: 317-322. https://doi.org/10.3746/jkfn.2005.34.3.317
  11. Ikekawa T, Nakanishi M, Uehara N, Chihara G, Fukuoka F. 1968. Antitumor action of some basidiomycetes, especially Phellinus linteus. Gann 59: 155-157.
  12. Lee JH, Cho SM, Song KS, Han SB, Kim HM, Hong ND, Yoo ID. 1996. Immunostimulating activity and characterization of polysaccharides from mycelium of Phelliuns linteus. J Microbiol Biotechnol 6: 213-218.
  13. Nanda J, Kuroda H. 1998. Potentiation of hostmediated antitumor activity by orally administered mushroom (Agaricus bisporus) fruit bodies. Chem Pharm Bull 36: 1437-1444.
  14. Park MA, Jeong YS, Chun GT, Cha YS. 2009. Antihyperlipidemic and glycemic control effects of mycelia of Inonotus obliquus including protein bound polysaccharides extract in C57BL/6J mice. J Food Nutr 38: 667-673. https://doi.org/10.3746/jkfn.2009.38.6.667
  15. Kim MS. 2000. $\gamma$-(1,6)-branched $\gamma$-(1,3)-glucan in skin care $\gamma$-(1,3)-glucan, produced in a new way from the Schizophyllum commune mushroom, has measurable benefits. Cosmetics & Toileries 115: 79-86.
  16. Mansell PWA. 1994. Polysaccharides in skin care. Cosmetics & Toileries 109: 67-72.
  17. Shimizu Y, Hasumi K, Masubuchi K. 1992. Augmenting effect of sizofiran on the immunofunction of regional lymph nodes in cervical cancer. J Cancer 69: 1184-1194.
  18. Nomoto K, Yoshikumi C, Matsunaga K, Fujii T, Takeya K. 1975. Restoration of antibody-forming capacities by PS-K in tumor-bearing mice. Gann 66: 365-374.
  19. Bao XF, Wang XS, Dong Q, Fang JN, Li XY. 2002. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochemistry 59: 175-181. https://doi.org/10.1016/S0031-9422(01)00450-2
  20. Oka M, Hazama S, Suzuki M, Wang F, Wadamori K, Iizuka N, Takeda S, Akitomi Y, Ohba Y, Kajiwara K, Suga T, Suzuki T. 1996. In vitro and in vivo analysis of human leukocyte binding by the antitumor polysaccharide, lentinan. Int J Immunopharmacol 18: 211-216. https://doi.org/10.1016/0192-0561(95)00115-8
  21. Takuma S, Nobuo T. 1976. Further study of the structure of lentinan, antitumor polysacchrides from Lentinus edodes. Carbohydr Res 47: 99-104. https://doi.org/10.1016/S0008-6215(00)83552-1
  22. Ohno N, Suzuki I, Oikawa S, Sato K, Miyazaki T, Yadomae T. 1984. Antitumor activity and structural characterization of glucan extracted from cultured fruit bodies of Grifola frondosa. Chem Pharm Bull 32: 1142-1151. https://doi.org/10.1248/cpb.32.1142
  23. Takaku T, Kiumra Y, Okuda H. 2001. Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action. J Nutr 131: 1409-1413.
  24. Chan GCF, Chan WK, Sze DMY. 2009. The effect of $\gamma$-glucan on human immune and cancer cells. J Hematol Oncol 2: 1-11. https://doi.org/10.1186/1756-8722-2-1
  25. Kohan G, Pajtinka M, Bavincova M, Miadokova E, Rauko P, Slamenova D, Korolenko TA. 2008. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma 55: 387-393.
  26. Song HS, Moon KY. 2006. In vitro antioxidant activity profiles of $\gamma$-glucan isolated from yeast Saccharomayces cerevisiae and mutant Saccharomayces cerevisiae IS2. J Food Sci Biotechnol 15: 437-440.
  27. Lowry VK, Farnell MB, Ferro PJ, Swaggerty CL, Bahl A, Kogut MH. 2005. Purified beta-glucan as an abiotic feed additive up-regulates the innate immune response in immature chickens against Salmonella enteric serovar Enteritidis. Int J Food Microbiol 98: 309-318. https://doi.org/10.1016/j.ijfoodmicro.2004.06.008
  28. Park JH, Kang MS, Kim HI, Chung BH, Lee KH, Moon WK. 2003. Study on immune-stimulating activity of $\gamma$-glucan isolated from the cell wall of yeast mutant Saccharomyces cerevisiae IS2. Korean J Food Sci Technol 35: 483-492.
  29. Yoon TJ, Kim TJ, Lee H, Shin KS, Yun YP, Moon WK, Kim DW, Lee KH. 2008. Anti-tumor metastatic activity of β-glucan purified from mutated Saccharomyces cerevisiae. Int immunopharmacol 8: 36-42. https://doi.org/10.1016/j.intimp.2007.10.005
  30. Park SK. 2009. Effects of beta-glucan from Coriolus versicolor on the phagocytosis of macrophages involves recognition by Dectin-1 and Ikaros. MS Thesis. Kangwon National University, Gangwon, Korea.

Cited by

  1. Resveratrol Induces Apoptosis through PI3K/Akt and p53 Signal Pathway in MDA-MB-231 Breast Cancer Cells vol.44, pp.4, 2012, https://doi.org/10.9721/KJFST.2012.44.4.452
  2. Determination of Eleutherosides and β-Glucan Content from Different Parts and Cultivating Areas of A. senticosus and A. koreanum vol.42, pp.12, 2013, https://doi.org/10.3746/jkfn.2013.42.12.2082
  3. Isoflavone, β-Glucan Content and Antioxidant Activity of Defatted Soybean Powder by Bioconversion with Lentinula edodes vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.386
  4. Application of Ecklonia cava Kjellman by-product as a feed additive: enhancing weight gain, immunity and protection from Salmonella infection in chickens vol.56, pp.4, 2016, https://doi.org/10.14405/kjvr.2016.56.4.255
  5. Effect of Enzyme and Yeast Extract Supplement on Growth Performances, in vitro Ruminal Fermentation and Blood Parameters in Hanwoo Steers vol.48, pp.3, 2014, https://doi.org/10.14397/jals.2014.48.3.173
  6. Characteristics of mushroom Phellinus baumii extracts with enzyme pretreatment vol.61, pp.1, 2018, https://doi.org/10.3839/jabc.2018.015
  7. 인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과 vol.27, pp.11, 2017, https://doi.org/10.5352/jls.2017.27.11.1256